BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 23273113)

  • 41. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.
    Miranda ES; Silva TH; Reis RL; Mano JF
    Tissue Eng Part A; 2011 Nov; 17(21-22):2663-74. PubMed ID: 21790302
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface engineering approaches to micropattern surfaces for cell-based assays.
    Falconnet D; Csucs G; Grandin HM; Textor M
    Biomaterials; 2006 Jun; 27(16):3044-63. PubMed ID: 16458351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inkjet printing of protein microarrays on freestanding polymeric nanofilms for spatio-selective cell culture environment.
    Fujie T; Desii A; Ventrelli L; Mazzolai B; Mattoli V
    Biomed Microdevices; 2012 Dec; 14(6):1069-76. PubMed ID: 22986760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of biomimetic hydrogels with controlled cell adhesive properties and topographical features for the study of muscle cell adhesion and proliferation.
    Jun I; Kim SJ; Choi E; Park KM; Rhim T; Park J; Park KD; Shin H
    Macromol Biosci; 2012 Nov; 12(11):1502-13. PubMed ID: 22965817
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hierarchical scaffolds via combined macro- and micro-phase separation.
    George PA; Quinn K; Cooper-White JJ
    Biomaterials; 2010 Feb; 31(4):641-7. PubMed ID: 19836830
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth.
    Krishnan V; Kasuya Y; Ji Q; Sathish M; Shrestha LK; Ishihara S; Minami K; Morita H; Yamazaki T; Hanagata N; Miyazawa K; Acharya S; Nakanishi W; Hill JP; Ariga K
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15667-73. PubMed ID: 26115554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D polymer scaffold arrays.
    Simon CG; Yang Y; Dorsey SM; Ramalingam M; Chatterjee K
    Methods Mol Biol; 2011; 671():161-74. PubMed ID: 20967629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.
    Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F
    Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stripe-patterned thermo-responsive cell culture dish for cell separation without cell labeling.
    Kumashiro Y; Ishihara J; Umemoto T; Itoga K; Kobayashi J; Shimizu T; Yamato M; Okano T
    Small; 2015 Feb; 11(6):681-7. PubMed ID: 25238273
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.
    Shimizu K; Fujita H; Nagamori E
    Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D
    Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Endothelial cell scaffolds generated by 3D direct writing of biodegradable polymer microfibers.
    Berry SM; Warren SP; Hilgart DA; Schworer AT; Pabba S; Gobin AS; Cohn RW; Keynton RS
    Biomaterials; 2011 Mar; 32(7):1872-9. PubMed ID: 21144583
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of micron/submicron hybrid patterns via a two-stage UV-imprint technique and their dimensional effects on cell adhesion and alignment.
    Li JY; Ho YC; Chung YC; Lin FC; Liao WL; Tsai WB
    Biofabrication; 2013 Sep; 5(3):035003. PubMed ID: 23714853
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro evaluation of elastic multiblock co-polymers as a scaffold material for reconstruction of blood vessels.
    Tzoneva R; Weckwerth C; Seifert B; Behl M; Heuchel M; Tsoneva I; Lendlein A
    J Biomater Sci Polym Ed; 2011; 22(16):2205-26. PubMed ID: 21073803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application.
    Zhang QS; Yan YH; Li SP; Feng T
    Biomed Mater; 2009 Jun; 4(3):035008. PubMed ID: 19468157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of novel 2D and 3D biointerfaces using self-organization to control cell behavior.
    Tanaka M
    Biochim Biophys Acta; 2011 Mar; 1810(3):251-8. PubMed ID: 21029767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene.
    Rebollar E; Frischauf I; Olbrich M; Peterbauer T; Hering S; Preiner J; Hinterdorfer P; Romanin C; Heitz J
    Biomaterials; 2008 Apr; 29(12):1796-806. PubMed ID: 18237776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.