BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 23273282)

  • 1. Reaction of pyranose dehydrogenase from Agaricus meleagris with its carbohydrate substrates.
    Graf MM; Sucharitakul J; Bren U; Chu DB; Koellensperger G; Hann S; Furtmüller PG; Obinger C; Peterbauer CK; Oostenbrink C; Chaiyen P; Haltrich D
    FEBS J; 2015 Nov; 282(21):4218-41. PubMed ID: 26284701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fluorescence emission of the apo-glucose oxidase from Aspergillus niger as probe to estimate glucose concentrations.
    D'Auria S; Herman P; Rossi M; Lakowicz JR
    Biochem Biophys Res Commun; 1999 Sep; 263(2):550-3. PubMed ID: 10491329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes.
    Ferri S; Kojima K; Sode K
    J Diabetes Sci Technol; 2011 Sep; 5(5):1068-76. PubMed ID: 22027299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does Acinetobacter calcoaceticus glucose dehydrogenase produce self-damaging H2O2?
    Lublin V; Kauffmann B; Engilberge S; Durola F; Gounel S; Bichon S; Jean C; Mano N; Giraud MF; Chavas LMGH; Thureau A; Thompson A; Stines-Chaumeil C
    Biosci Rep; 2024 May; 44(5):. PubMed ID: 38687614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of a maltose receptor into a zinc biosensor by computational design.
    Marvin JS; Hellinga HW
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4955-60. PubMed ID: 11320244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization of quinoprotein glucose dehydrogenase variants and homologues by microseeding.
    Sanchez-Weatherby J; Southall S; Oubrie A
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Jun; 62(Pt 6):518-21. PubMed ID: 16754970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a panel of glucose indicator proteins for continuous glucose monitoring.
    Jin S; Veetil JV; Garrett JR; Ye K
    Biosens Bioelectron; 2011 Apr; 26(8):3427-31. PubMed ID: 21333521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amperometric Biosensors Based on Direct Electron Transfer Enzymes.
    Schachinger F; Chang H; Scheiblbrandner S; Ludwig R
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development Perspective of Bioelectrocatalysis-Based Biosensors.
    Adachi T; Kitazumi Y; Shirai O; Kano K
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32858975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein.
    Yoshida H; Kojima K; Shiota M; Yoshimatsu K; Yamazaki T; Ferri S; Tsugawa W; Kamitori S; Sode K
    Acta Crystallogr D Struct Biol; 2019 Sep; 75(Pt 9):841-851. PubMed ID: 31478907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermophilic
    Iwasa H; Hiratsuka A; Yokoyama K; Uzawa H; Orihara K; Muguruma H
    ACS Omega; 2017 Apr; 2(4):1660-1665. PubMed ID: 30023641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.
    Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors.
    Loew N; Tsugawa W; Nagae D; Kojima K; Sode K
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct enzymatic bioelectrocatalysis: differentiating between myth and reality.
    Milton RD; Minteer SD
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28637918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.
    Tsuruoka N; Sadakane T; Hayashi R; Tsujimura S
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28287419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of fungus-derived FAD glucose dehydrogenase.
    Yoshida H; Sakai G; Mori K; Kojima K; Kamitori S; Sode K
    Sci Rep; 2015 Aug; 5():13498. PubMed ID: 26311535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.
    Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K
    Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia.
    Yamaoka H; Yamashita Y; Ferri S; Sode K
    Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.
    Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K
    Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.