BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

882 related articles for article (PubMed ID: 23274067)

  • 1. Sagittal plane body kinematics and kinetics during single-leg landing from increasing vertical heights and horizontal distances: implications for risk of non-contact ACL injury.
    Ali N; Robertson DG; Rouhi G
    Knee; 2014 Jan; 21(1):38-46. PubMed ID: 23274067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gender, Vertical Height and Horizontal Distance Effects on Single-Leg Landing Kinematics: Implications for Risk of non-contact ACL Injury.
    Ali N; Rouhi G; Robertson G
    J Hum Kinet; 2013; 37():27-38. PubMed ID: 24146702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Prophylactic Knee Bracing on Lower Limb Kinematics, Kinetics, and Energetics During Double-Leg Drop Landing at 2 Heights.
    Ewing KA; Begg RK; Galea MP; Lee PV
    Am J Sports Med; 2016 Jul; 44(7):1753-61. PubMed ID: 27159284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings.
    Ali N; Andersen MS; Rasmussen J; Robertson DG; Rouhi G
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1602-16. PubMed ID: 23387967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury.
    Shimokochi Y; Ambegaonkar JP; Meyer EG; Lee SY; Shultz SJ
    Knee Surg Sports Traumatol Arthrosc; 2013 Apr; 21(4):888-97. PubMed ID: 22543471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.
    Podraza JT; White SC
    Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of three jump landing tasks on kinetic and kinematic measures: implications for ACL injury research.
    Cruz A; Bell D; McGrath M; Blackburn T; Padua D; Herman D
    Res Sports Med; 2013; 21(4):330-42. PubMed ID: 24067119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Foot-Landing Positions at Initial Contact on Knee Flexion Angles for Single-Leg Drop Landings.
    Teng PSP; Leong KF; Kong PW
    Res Q Exerc Sport; 2020 Jun; 91(2):316-325. PubMed ID: 31774376
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing.
    Lee J; Song Y; Shin CS
    Gait Posture; 2018 May; 62():99-104. PubMed ID: 29544157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower Limb Biomechanics During Single-Leg Landings Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis.
    Johnston PT; McClelland JA; Webster KE
    Sports Med; 2018 Sep; 48(9):2103-2126. PubMed ID: 29949109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.
    Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B
    Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury.
    Norcross MF; Blackburn JT; Goerger BM; Padua DA
    Clin Biomech (Bristol, Avon); 2010 Dec; 25(10):1031-6. PubMed ID: 20797812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex differences in unilateral landing mechanics from absolute and relative heights.
    Weinhandl JT; Irmischer BS; Sievert ZA
    Knee; 2015 Sep; 22(4):298-303. PubMed ID: 25910453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association between ankle angle at initial contact and biomechanical ACL injury risk factors in male during self-selected single-leg landing.
    Lee J; Shin CS
    Gait Posture; 2021 Jan; 83():127-131. PubMed ID: 33130387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks.
    Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC
    J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Injury Prevention Programs on the Biomechanics of Landing Tasks: A Systematic Review With Meta-analysis.
    Lopes TJA; Simic M; Myer GD; Ford KR; Hewett TE; Pappas E
    Am J Sports Med; 2018 May; 46(6):1492-1499. PubMed ID: 28759729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered landing mechanics in ACL-reconstructed patients.
    Oberländer KD; Brüggemann GP; Höher J; Karamanidis K
    Med Sci Sports Exerc; 2013 Mar; 45(3):506-13. PubMed ID: 23034645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison between back squat exercise and vertical jump kinematics: implications for determining anterior cruciate ligament injury risk.
    Wallace BJ; Kernozek TW; Mikat RP; Wright GA; Simons SZ; Wallace KL
    J Strength Cond Res; 2008 Jul; 22(4):1249-58. PubMed ID: 18545181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.