BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23274143)

  • 1. The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: implications for transcription start-site selection.
    Robb NC; Cordes T; Hwang LC; Gryte K; Duchi D; Craggs TD; Santoso Y; Weiss S; Ebright RH; Kapanidis AN
    J Mol Biol; 2013 Mar; 425(5):875-85. PubMed ID: 23274143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters.
    Winkelman JT; Chandrangsu P; Ross W; Gourse RL
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1787-95. PubMed ID: 26976590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism.
    Kapanidis AN; Margeat E; Ho SO; Kortkhonjia E; Weiss S; Ebright RH
    Science; 2006 Nov; 314(5802):1144-7. PubMed ID: 17110578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation.
    Drennan A; Kraemer M; Capp M; Gries T; Ruff E; Sheppard C; Wigneshweraraj S; Artsimovitch I; Record MT
    Biochemistry; 2012 Nov; 51(47):9447-59. PubMed ID: 23116321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution.
    Koh HR; Roy R; Sorokina M; Tang GQ; Nandakumar D; Patel SS; Ha T
    Mol Cell; 2018 May; 70(4):695-706.e5. PubMed ID: 29775583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open complex DNA scrunching: A key to transcription start site selection and promoter escape.
    Winkelman JT; Gourse RL
    Bioessays; 2017 Feb; 39(2):. PubMed ID: 28052345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural perspective on mutations affecting the function of multisubunit RNA polymerases.
    Trinh V; Langelier MF; Archambault J; Coulombe B
    Microbiol Mol Biol Rev; 2006 Mar; 70(1):12-36. PubMed ID: 16524917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing DNA opening in transcription using quenchable Förster resonance energy transfer.
    Cordes T; Santoso Y; Tomescu AI; Gryte K; Hwang LC; Camará B; Wigneshweraraj S; Kapanidis AN
    Biochemistry; 2010 Nov; 49(43):9171-80. PubMed ID: 20818825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA polymerase motions during promoter melting.
    Feklistov A; Bae B; Hauver J; Lass-Napiorkowska A; Kalesse M; Glaus F; Altmann KH; Heyduk T; Landick R; Darst SA
    Science; 2017 May; 356(6340):863-866. PubMed ID: 28546214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription inactivation through local refolding of the RNA polymerase structure.
    Belogurov GA; Vassylyeva MN; Sevostyanova A; Appleman JR; Xiang AX; Lira R; Webber SE; Klyuyev S; Nudler E; Artsimovitch I; Vassylyev DG
    Nature; 2009 Jan; 457(7227):332-5. PubMed ID: 18946472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative transcription cycle for bacterial RNA polymerase.
    Harden TT; Herlambang KS; Chamberlain M; Lalanne JB; Wells CD; Li GW; Landick R; Hochschild A; Kondev J; Gelles J
    Nat Commun; 2020 Jan; 11(1):448. PubMed ID: 31974358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA opening during transcription initiation by RNA polymerase II in atomic detail.
    Lapierre J; Hub JS
    Biophys J; 2022 Nov; 121(22):4299-4310. PubMed ID: 36230000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures illustrate step-by-step mitochondrial transcription initiation.
    Goovaerts Q; Shen J; De Wijngaert B; Basu U; Patel SS; Das K
    Nature; 2023 Oct; 622(7984):872-879. PubMed ID: 37821701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational heterogeneity in RNA polymerase observed by single-pair FRET microscopy.
    Coban O; Lamb DC; Zaychikov E; Heumann H; Nienhaus GU
    Biophys J; 2006 Jun; 90(12):4605-17. PubMed ID: 16581837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA polymerase: a nexus of gene regulation.
    Helmann JD
    Methods; 2009 Jan; 47(1):1-5. PubMed ID: 19070783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic landscape of transcription initiation in yeast mitochondria.
    Sohn BK; Basu U; Lee SW; Cho H; Shen J; Deshpande A; Johnson LC; Das K; Patel SS; Kim H
    Nat Commun; 2020 Aug; 11(1):4281. PubMed ID: 32855416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation after synthesis of a four-nucleotide RNA commits RNA polymerase II to promoter escape.
    Kugel JF; Goodrich JA
    Mol Cell Biol; 2002 Feb; 22(3):762-73. PubMed ID: 11784853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule visualization of twin-supercoiled domains generated during transcription.
    Janissen R; Barth R; Polinder M; van der Torre J; Dekker C
    Nucleic Acids Res; 2024 Feb; 52(4):1677-1687. PubMed ID: 38084930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the triplex-duplex transition in DNA.
    Lee IB; Hong SC; Lee NK; Johner A
    Biophys J; 2012 Dec; 103(12):2492-501. PubMed ID: 23260051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of transcription through single-molecule experiments.
    Dangkulwanich M; Ishibashi T; Bintu L; Bustamante C
    Chem Rev; 2014 Mar; 114(6):3203-23. PubMed ID: 24502198
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.