These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 2327484)

  • 1. Effects of growth and speed on hindlimb joint angular displacement patterns in vervet monkeys (Cercopithecus aethiops).
    Vilensky JA; Gankiewicz E
    Am J Phys Anthropol; 1990 Mar; 81(3):441-9. PubMed ID: 2327484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of speed on forelimb joint angular displacement patterns in vervet monkeys (Cercopithecus aethiops).
    Vilensky JA; Gankiewicz E
    Am J Phys Anthropol; 1990 Oct; 83(2):203-10. PubMed ID: 2248379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of size on vervet (Cercopithecus aethiops) gait parameters: a longitudinal approach.
    Vilensky JA; Gankiewicz E; Townsend DW
    Am J Phys Anthropol; 1990 Mar; 81(3):429-39. PubMed ID: 2327483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjusting muscle function to demand: joint work during acceleration in wild turkeys.
    Roberts TJ; Scales JA
    J Exp Biol; 2004 Nov; 207(Pt 23):4165-74. PubMed ID: 15498962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cat step cycle: hind limb joint angles and muscle lengths during unrestrained locomotion.
    Goslow GE; Reinking RM; Stuart DG
    J Morphol; 1973 Sep; 141(1):1-41. PubMed ID: 4727469
    [No Abstract]   [Full Text] [Related]  

  • 6. Changes in 3D joint dynamics during the first 5 months after the onset of independent walking: a longitudinal follow-up study.
    Hallemans A; De Clercq D; Aerts P
    Gait Posture; 2006 Nov; 24(3):270-9. PubMed ID: 16314099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of walking speed on obstacle crossing in healthy young and healthy older adults.
    Draganich LF; Kuo CE
    J Biomech; 2004 Jun; 37(6):889-96. PubMed ID: 15111076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed-dependent variations of lower-limb joint angles during walking. A graphic computerized method showing individual patterns.
    Frigo C; Tesio L
    Am J Phys Med; 1986 Apr; 65(2):51-62. PubMed ID: 3963165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of unilateral knee immobilization on lower extremity gait mechanics.
    Lage KJ; White SC; Yack HJ
    Med Sci Sports Exerc; 1995 Jan; 27(1):8-14. PubMed ID: 7898343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity.
    Bieryla KA; Anderson DE; Madigan ML
    J Electromyogr Kinesiol; 2009 Feb; 19(1):139-44. PubMed ID: 17720539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. During walking elders increase efforts at proximal joints and keep low kinetics at the ankle.
    Monaco V; Rinaldi LA; Macrì G; Micera S
    Clin Biomech (Bristol, Avon); 2009 Jul; 24(6):493-8. PubMed ID: 19427720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle.
    Begg RK; Sparrow WA
    J Med Eng Technol; 2006; 30(6):382-9. PubMed ID: 17060166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory gait mechanics in patients with unilateral knee arthritis.
    McGibbon CA; Krebs DE
    J Rheumatol; 2002 Nov; 29(11):2410-9. PubMed ID: 12415602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparative analysis of the kinematics of hindlimb movements in different forms of locomotion in the rat].
    Iakhnitsa IA; Piliavskiĭ AI; Bulgakova NV
    Neirofiziologiia; 1985; 17(2):189-98. PubMed ID: 4000303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speed-related changes in hindlimb intersegmental dynamics during the swing phase of cat locomotion.
    Wisleder D; Zernicke RF; Smith JL
    Exp Brain Res; 1990; 79(3):651-60. PubMed ID: 2340881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sagittal joint kinematics, moments, and powers are predominantly characterized by speed of progression, not age, in normal children.
    Stansfield BW; Hillman SJ; Hazlewood ME; Lawson AA; Mann AM; Loudon IR; Robb JE
    J Pediatr Orthop; 2001; 21(3):403-11. PubMed ID: 11371829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the 3D inverse dynamic method on the joint forces and moments during gait.
    Dumas R; Nicol E; Chèze L
    J Biomech Eng; 2007 Oct; 129(5):786-90. PubMed ID: 17887905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cadence on energy generation and absorption at lower extremity joints during gait.
    Teixeira-Salmela LF; Nadeau S; Milot MH; Gravel D; Requião LF
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):769-78. PubMed ID: 18384921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral claudication results in alterations in the gait biomechanics at the hip and ankle joints.
    Chen SJ; Pipinos I; Johanning J; Radovic M; Huisinga JM; Myers SA; Stergiou N
    J Biomech; 2008 Aug; 41(11):2506-14. PubMed ID: 18586253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.