These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23274858)

  • 1. Finite element modeling of energy absorbance in normal and disordered human ears.
    Zhang X; Gan RZ
    Hear Res; 2013 Jul; 301():146-55. PubMed ID: 23274858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifield coupled finite element analysis for sound transmission in otitis media with effusion.
    Gan RZ; Wang X
    J Acoust Soc Am; 2007 Dec; 122(6):3527-38. PubMed ID: 18247761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear.
    Wang X; Keefe DH; Gan RZ
    J Acoust Soc Am; 2016 Apr; 139(4):1735. PubMed ID: 27106321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-integrated finite element modeling of human middle ear.
    Sun Q; Gan RZ; Chang KH; Dormer KJ
    Biomech Model Mechanobiol; 2002 Oct; 1(2):109-22. PubMed ID: 14595544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive model of human ear for analysis of implantable hearing devices.
    Zhang X; Gan RZ
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):3024-7. PubMed ID: 21708496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting sound energy absorbance in acute otitis media model of chinchilla.
    Guan X; Seale TW; Gan RZ
    Hear Res; 2017 Jul; 350():22-31. PubMed ID: 28426992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tympanometry and laser Doppler interferometry measurements on otitis media with effusion model in human temporal bones.
    Dai C; Wood MW; Gan RZ
    Otol Neurotol; 2007 Jun; 28(4):551-8. PubMed ID: 17529855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone.
    Feeney MP; Grant IL; Mills DM
    Ear Hear; 2009 Aug; 30(4):391-400. PubMed ID: 19424071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Round Window Stimulation Performance in Otosclerosis Using Finite Element Modeling.
    Yang S; Xu D; Liu X
    Comput Math Methods Med; 2016; 2016():3603207. PubMed ID: 27034709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring absorbed energy in the human auditory system using finite element models: A comparison with experimental results.
    Castro-Egler C; Garcia-Gonzalez A; Aguilera JA; Cerezo PM; Lopez-Crespo P; González-Herrera A
    Technol Health Care; 2024; 32(S1):3-15. PubMed ID: 38669493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear.
    Wang X; Cheng T; Gan RZ
    J Acoust Soc Am; 2007 Aug; 122(2):906-17. PubMed ID: 17672640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.
    Zhang J; Tian J; Ta N; Huang X; Rao Z
    Proc Inst Mech Eng H; 2016 Aug; 230(8):784-94. PubMed ID: 27276992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.
    Lee CF; Chen PR; Lee WJ; Chen JH; Liu TC
    Laryngoscope; 2006 May; 116(5):711-6. PubMed ID: 16652076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea.
    Bradshaw JJ; Brown MA; Jiang S; Gan RZ
    Ann Biomed Eng; 2023 May; 51(5):1106-1118. PubMed ID: 37036617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional finite element modeling of the human external ear: simulation study of the bone conduction occlusion effect.
    Brummund MK; Sgard F; Petit Y; Laville F
    J Acoust Soc Am; 2014 Mar; 135(3):1433-44. PubMed ID: 24606280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single-ossicle ear: Acoustic response and mechanical properties measured in duck.
    Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ
    Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions.
    Gan RZ; Sun Q; Feng B; Wood MW
    Med Eng Phys; 2006 Jun; 28(5):395-404. PubMed ID: 16122964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.