BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23275029)

  • 1. Nuclear factor-κB (NF-κB) regulates the expression of human testis-enriched Leucine-rich repeats and WD repeat domain containing 1 (LRWD1) gene.
    Teng YN; Chuang PJ; Liu YW
    Int J Mol Sci; 2012 Dec; 14(1):625-39. PubMed ID: 23275029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of lrwd1 in mouse testis and its centrosomal localization.
    Teng YN; Liao MH; Lin YB; Kuo PL; Kuo TY
    Int J Androl; 2010 Dec; 33(6):832-40. PubMed ID: 20180869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput RNAi screen in Ewing sarcoma cells identifies leucine rich repeats and WD repeat domain containing 1 (LRWD1) as a regulator of EWS-FLI1 driven cell viability.
    He T; Surdez D; Rantala JK; Haapa-Paananen S; Ban J; Kauer M; Tomazou E; Fey V; Alonso J; Kovar H; Delattre O; Iljin K
    Gene; 2017 Jan; 596():137-146. PubMed ID: 27760381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the human intestinal CD98 promoter and its regulation by interferon-gamma.
    Yan Y; Dalmasso G; Sitaraman S; Merlin D
    Am J Physiol Gastrointest Liver Physiol; 2007 Feb; 292(2):G535-45. PubMed ID: 17023546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear factor erythroid-2-related factor regulates LRWD1 expression and cellular adaptation to oxidative stress in human embryonal carcinoma cells.
    Hung JH; Wee SK; Omar HA; Su CH; Chen HY; Chen PS; Chiu CC; Wu MS; Teng YN
    Biochimie; 2018 May; 148():99-106. PubMed ID: 29544732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo binding of NF-kappaB to the IkappaBbeta promoter is insufficient for transcriptional activation.
    Griffin BD; Moynagh PN
    Biochem J; 2006 Nov; 400(1):115-25. PubMed ID: 16792530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LRWD1 Regulates Microtubule Nucleation and Proper Cell Cycle Progression in the Human Testicular Embryonic Carcinoma Cells.
    Wang CY; Hong YH; Syu JS; Tsai YC; Liu XY; Chen TY; Su YM; Kuo PL; Lin YM; Teng YN
    J Cell Biochem; 2018 Jan; 119(1):314-326. PubMed ID: 28569402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the infection-responsive bovine lactoferrin promoter.
    Zheng J; Ather JL; Sonstegard TS; Kerr DE
    Gene; 2005 Jun; 353(1):107-17. PubMed ID: 15935571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between leucine rich domain and the stability of LRWD1 protein in human NT2/D1 cells.
    Tsai YC; Teng YN; Hung JH; Wu CH; Kuo YT; Kuo PL; Chiu CC; Huang B
    Adv Med Sci; 2014 Sep; 59(2):266-72. PubMed ID: 25170821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NF-κB, Sp1 and NF-Y as transcriptional regulators of human SND1 gene.
    Armengol S; Arretxe E; Rodríguez L; Ochoa B; Chico Y; Martínez MJ
    Biochimie; 2013 Apr; 95(4):735-42. PubMed ID: 23160072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation mechanisms of hypoxia-induced neuroglobin gene expression.
    Liu N; Yu Z; Xiang S; Zhao S; Tjärnlund-Wolf A; Xing C; Zhang J; Wang X
    Biochem J; 2012 Apr; 443(1):153-64. PubMed ID: 22239089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NF-κB Mediates the Expression of TBX15 in Cancer Cells.
    Arribas J; Cajuso T; Rodio A; Marcos R; Leonardi A; Velázquez A
    PLoS One; 2016; 11(6):e0157761. PubMed ID: 27327083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NF-kappaB site interacts with Sp factors and up-regulates the NR1 promoter during neuronal differentiation.
    Liu A; Hoffman PW; Lu W; Bai G
    J Biol Chem; 2004 Apr; 279(17):17449-58. PubMed ID: 14970236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene.
    Li A; Zhang Y; Zhao Z; Wang M; Zan L
    PLoS One; 2016; 11(7):e0157445. PubMed ID: 27379520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of the NF-kappaB binding site in the human NOD2 promoter.
    Hu C; Sun L; Hu Y; Lu D; Wang H; Tang S
    Cell Mol Immunol; 2010 Jul; 7(4):288-95. PubMed ID: 20436512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumour necrosis factor alpha induces co-ordinated activation of rat GSH synthetic enzymes via nuclear factor kappaB and activator protein-1.
    Yang H; Magilnick N; Ou X; Lu SC
    Biochem J; 2005 Oct; 391(Pt 2):399-408. PubMed ID: 16011481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional activation of the human prostatic acid phosphatase gene by NF-kappaB via a novel hexanucleotide-binding site.
    Zelivianski S; Glowacki R; Lin MF
    Nucleic Acids Res; 2004; 32(12):3566-80. PubMed ID: 15240830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the mouse gene encoding TAFI by TNFα: role of NFκB binding site.
    Garand M; Lin JH; Hill CE; Zagorac B; Koschinsky ML; Boffa MB
    Cytokine; 2012 Mar; 57(3):389-97. PubMed ID: 22217421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human macrophage inflammatory protein-3alpha/CCL20/LARC/Exodus/SCYA20 is transcriptionally upregulated by tumor necrosis factor-alpha via a non-standard NF-kappaB site.
    Harant H; Eldershaw SA; Lindley IJ
    FEBS Lett; 2001 Dec; 509(3):439-45. PubMed ID: 11749970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the human CIDEA promoter in fat cells.
    Pettersson AT; Laurencikiene J; Nordström EA; Stenson BM; van Harmelen V; Murphy C; Dahlman I; Rydén M
    Int J Obes (Lond); 2008 Sep; 32(9):1380-7. PubMed ID: 18607384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.