BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23275378)

  • 1. Molecular mechanisms underlying the apoptotic effect of KCNB1 K+ channel oxidation.
    Wu X; Hernandez-Enriquez B; Banas M; Xu R; Sesti F
    J Biol Chem; 2013 Feb; 288(6):4128-34. PubMed ID: 23275378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of KCNB1 potassium channels triggers apoptotic integrin signaling in the brain.
    Yu W; Gowda M; Sharad Y; Singh SA; Sesti F
    Cell Death Dis; 2017 Apr; 8(4):e2737. PubMed ID: 28383553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury.
    Yu W; Parakramaweera R; Teng S; Gowda M; Sharad Y; Thakker-Varia S; Alder J; Sesti F
    J Neurosci; 2016 Oct; 36(43):11084-11096. PubMed ID: 27798188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic role of K+ channel oxidation in mammalian brain.
    Cotella D; Hernandez-Enriquez B; Wu X; Li R; Pan Z; Leveille J; Link CD; Oddo S; Sesti F
    J Neurosci; 2012 Mar; 32(12):4133-44. PubMed ID: 22442077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of KCNB1 channels in the human brain and in mouse model of Alzheimer's disease.
    Wei Y; Shin MR; Sesti F
    Cell Death Dis; 2018 Jul; 9(8):820. PubMed ID: 30050035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of KCNB1 potassium channels in the murine brain during aging is associated with cognitive impairment.
    Yu W; Zhang H; Shin MR; Sesti F
    Biochem Biophys Res Commun; 2019 May; 512(4):665-669. PubMed ID: 30922570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epilepsy and neurobehavioral abnormalities in mice with a dominant-negative KCNB1 pathogenic variant.
    Hawkins NA; Misra SN; Jurado M; Kang SK; Vierra NC; Nguyen K; Wren L; George AL; Trimmer JS; Kearney JA
    Neurobiol Dis; 2021 Jan; 147():105141. PubMed ID: 33132203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of KCNB1 K(+) channels in central nervous system and beyond.
    Sesti F; Wu X; Liu S
    World J Biol Chem; 2014 May; 5(2):85-92. PubMed ID: 24921000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization.
    Thiffault I; Speca DJ; Austin DC; Cobb MM; Eum KS; Safina NP; Grote L; Farrow EG; Miller N; Soden S; Kingsmore SF; Trimmer JS; Saunders CJ; Sack JT
    J Gen Physiol; 2015 Nov; 146(5):399-410. PubMed ID: 26503721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexes formed with integrin-α5 and KCNB1 potassium channel wild type or epilepsy-susceptibility variants modulate cellular plasticity
    Yu W; Shin MR; Sesti F
    FASEB J; 2019 Dec; 33(12):14680-14689. PubMed ID: 31682765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer's disease mouse model.
    Frazzini V; Guarnieri S; Bomba M; Navarra R; Morabito C; Mariggiò MA; Sensi SL
    Cell Death Dis; 2016 Feb; 7(2):e2100. PubMed ID: 26890139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Pro-Apoptotic Phosphorylation of Kv2.1 K+ Channels.
    He K; McCord MC; Hartnett KA; Aizenman E
    PLoS One; 2015; 10(6):e0129498. PubMed ID: 26115091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonistic roles of Ras-MAPK and Akt signaling in integrin-K
    Forzisi E; Yu W; Rajwade P; Sesti F
    FASEB J; 2022 May; 36(5):e22292. PubMed ID: 35357039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of KCNB1 in the prognosis of gliomas and autophagy modulation.
    Wang HY; Wang W; Liu YW; Li MY; Liang TY; Li JY; Hu HM; Lu Y; Yao C; Ye YY; Wang YZ; Zhang SZ
    Sci Rep; 2017 Feb; 7(1):14. PubMed ID: 28144039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing.
    Saitsu H; Akita T; Tohyama J; Goldberg-Stern H; Kobayashi Y; Cohen R; Kato M; Ohba C; Miyatake S; Tsurusaki Y; Nakashima M; Miyake N; Fukuda A; Matsumoto N
    Sci Rep; 2015 Oct; 5():15199. PubMed ID: 26477325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells.
    Sobko A; Peretz A; Attali B
    EMBO J; 1998 Aug; 17(16):4723-34. PubMed ID: 9707431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic modulation of the kv2.1 channel by SRC-dependent tyrosine phosphorylation.
    Song MY; Hong C; Bae SH; So I; Park KS
    J Proteome Res; 2012 Feb; 11(2):1018-26. PubMed ID: 22106938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMIGO-Kv2.1 Potassium Channel Complex Is Associated With Schizophrenia-Related Phenotypes.
    Peltola MA; Kuja-Panula J; Liuhanen J; Võikar V; Piepponen P; Hiekkalinna T; Taira T; Lauri SE; Suvisaari J; Kulesskaya N; Paunio T; Rauvala H
    Schizophr Bull; 2016 Jan; 42(1):191-201. PubMed ID: 26240432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel KCNB1 mutation associated with non-syndromic intellectual disability.
    Latypova X; Matsumoto N; Vinceslas-Muller C; Bézieau S; Isidor B; Miyake N
    J Hum Genet; 2017 Apr; 62(5):569-573. PubMed ID: 27928161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor.
    Davidson D; Bakinowski M; Thomas ML; Horejsi V; Veillette A
    Mol Cell Biol; 2003 Mar; 23(6):2017-28. PubMed ID: 12612075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.