These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 23275495)
1. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Makanae K; Kintaka R; Makino T; Kitano H; Moriya H Genome Res; 2013 Feb; 23(2):300-11. PubMed ID: 23275495 [TBL] [Abstract][Full Text] [Related]
2. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. Moriya H; Shimizu-Yoshida Y; Kitano H PLoS Genet; 2006 Jul; 2(7):e111. PubMed ID: 16839182 [TBL] [Abstract][Full Text] [Related]
3. Robustness analysis of cellular systems using the genetic tug-of-war method. Moriya H; Makanae K; Watanabe K; Chino A; Shimizu-Yoshida Y Mol Biosyst; 2012 Oct; 8(10):2513-22. PubMed ID: 22722869 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the lower protein limit in the budding yeast Saccharomyces cerevisiae using TIPI-gTOW. Sasabe M; Shintani S; Kintaka R; Kaizu K; Makanae K; Moriya H BMC Syst Biol; 2014 Jan; 8():2. PubMed ID: 24393197 [TBL] [Abstract][Full Text] [Related]
5. Overexpression limits of fission yeast cell-cycle regulators in vivo and in silico. Moriya H; Chino A; Kapuy O; Csikász-Nagy A; Novák B Mol Syst Biol; 2011 Dec; 7():556. PubMed ID: 22146300 [TBL] [Abstract][Full Text] [Related]
6. Whole genome genetic-typing in yeast using high-density oligonucleotide arrays. Winzeler EA; Lee B; McCusker JH; Davis RW Parasitology; 1999; 118 Suppl():S73-80. PubMed ID: 10466139 [TBL] [Abstract][Full Text] [Related]
7. Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Magtanong L; Ho CH; Barker SL; Jiao W; Baryshnikova A; Bahr S; Smith AM; Heisler LE; Choy JS; Kuzmin E; Andrusiak K; Kobylianski A; Li Z; Costanzo M; Basrai MA; Giaever G; Nislow C; Andrews B; Boone C Nat Biotechnol; 2011 May; 29(6):505-11. PubMed ID: 21572441 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae. Hurowitz EH; Brown PO Genome Biol; 2003; 5(1):R2. PubMed ID: 14709174 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Infante JJ; Dombek KM; Rebordinos L; Cantoral JM; Young ET Genetics; 2003 Dec; 165(4):1745-59. PubMed ID: 14704163 [TBL] [Abstract][Full Text] [Related]
11. High-Copy Yeast Library Construction and High-Copy Rescue Genetic Screen in Saccharomyces cerevisiae. Zeng F; Quintana DG Methods Mol Biol; 2021; 2196():77-83. PubMed ID: 32889714 [TBL] [Abstract][Full Text] [Related]
13. Open reading frames in the antisense strands of genes coding for glycolytic enzymes in Saccharomyces cerevisiae. Boles E; Zimmermann FK Mol Gen Genet; 1994 May; 243(4):363-8. PubMed ID: 8202080 [TBL] [Abstract][Full Text] [Related]
14. Characterization and prediction of haploinsufficiency using systems-level gene properties in yeast. Norris M; Lovell S; Delneri D G3 (Bethesda); 2013 Nov; 3(11):1965-77. PubMed ID: 24048642 [TBL] [Abstract][Full Text] [Related]
15. Dosage compensation can buffer copy-number variation in wild yeast. Hose J; Yong CM; Sardi M; Wang Z; Newton MA; Gasch AP Elife; 2015 May; 4():. PubMed ID: 25955966 [TBL] [Abstract][Full Text] [Related]