These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23275495)

  • 1. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method.
    Makanae K; Kintaka R; Makino T; Kitano H; Moriya H
    Genome Res; 2013 Feb; 23(2):300-11. PubMed ID: 23275495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae.
    Moriya H; Shimizu-Yoshida Y; Kitano H
    PLoS Genet; 2006 Jul; 2(7):e111. PubMed ID: 16839182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness analysis of cellular systems using the genetic tug-of-war method.
    Moriya H; Makanae K; Watanabe K; Chino A; Shimizu-Yoshida Y
    Mol Biosyst; 2012 Oct; 8(10):2513-22. PubMed ID: 22722869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the lower protein limit in the budding yeast Saccharomyces cerevisiae using TIPI-gTOW.
    Sasabe M; Shintani S; Kintaka R; Kaizu K; Makanae K; Moriya H
    BMC Syst Biol; 2014 Jan; 8():2. PubMed ID: 24393197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression limits of fission yeast cell-cycle regulators in vivo and in silico.
    Moriya H; Chino A; Kapuy O; Csikász-Nagy A; Novák B
    Mol Syst Biol; 2011 Dec; 7():556. PubMed ID: 22146300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole genome genetic-typing in yeast using high-density oligonucleotide arrays.
    Winzeler EA; Lee B; McCusker JH; Davis RW
    Parasitology; 1999; 118 Suppl():S73-80. PubMed ID: 10466139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell.
    Magtanong L; Ho CH; Barker SL; Jiao W; Baryshnikova A; Bahr S; Smith AM; Heisler LE; Choy JS; Kuzmin E; Andrusiak K; Kobylianski A; Li Z; Costanzo M; Basrai MA; Giaever G; Nislow C; Andrews B; Boone C
    Nat Biotechnol; 2011 May; 29(6):505-11. PubMed ID: 21572441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the yeast transcriptome.
    Velculescu VE; Zhang L; Zhou W; Vogelstein J; Basrai MA; Bassett DE; Hieter P; Vogelstein B; Kinzler KW
    Cell; 1997 Jan; 88(2):243-51. PubMed ID: 9008165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae.
    Hurowitz EH; Brown PO
    Genome Biol; 2003; 5(1):R2. PubMed ID: 14709174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast.
    Infante JJ; Dombek KM; Rebordinos L; Cantoral JM; Young ET
    Genetics; 2003 Dec; 165(4):1745-59. PubMed ID: 14704163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Copy Yeast Library Construction and High-Copy Rescue Genetic Screen in Saccharomyces cerevisiae.
    Zeng F; Quintana DG
    Methods Mol Biol; 2021; 2196():77-83. PubMed ID: 32889714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of iron-dependent growth reveals a novel yeast gene required for vacuolar acidification.
    Davis-Kaplan SR; Ward DM; Shiflett SL; Kaplan J
    J Biol Chem; 2004 Feb; 279(6):4322-9. PubMed ID: 14594803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open reading frames in the antisense strands of genes coding for glycolytic enzymes in Saccharomyces cerevisiae.
    Boles E; Zimmermann FK
    Mol Gen Genet; 1994 May; 243(4):363-8. PubMed ID: 8202080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and prediction of haploinsufficiency using systems-level gene properties in yeast.
    Norris M; Lovell S; Delneri D
    G3 (Bethesda); 2013 Nov; 3(11):1965-77. PubMed ID: 24048642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosage compensation can buffer copy-number variation in wild yeast.
    Hose J; Yong CM; Sardi M; Wang Z; Newton MA; Gasch AP
    Elife; 2015 May; 4():. PubMed ID: 25955966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene dosage and gene duplicability.
    Qian W; Zhang J
    Genetics; 2008 Aug; 179(4):2319-24. PubMed ID: 18689880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae.
    Taylor SD; Zhang H; Eaton JS; Rodeheffer MS; Lebedeva MA; O'rourke TW; Siede W; Shadel GS
    Mol Biol Cell; 2005 Jun; 16(6):3010-8. PubMed ID: 15829566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome.
    Dietrich FS; Voegeli S; Brachat S; Lerch A; Gates K; Steiner S; Mohr C; Pöhlmann R; Luedi P; Choi S; Wing RA; Flavier A; Gaffney TD; Philippsen P
    Science; 2004 Apr; 304(5668):304-7. PubMed ID: 15001715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies.
    Ibáñez C; Pérez-Torrado R; Chiva R; Guillamón JM; Barrio E; Querol A
    Int J Food Microbiol; 2014 Feb; 171():129-35. PubMed ID: 24334254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New yeast genes important for chromosome integrity and segregation identified by dosage effects on genome stability.
    Ouspenski II; Elledge SJ; Brinkley BR
    Nucleic Acids Res; 1999 Aug; 27(15):3001-8. PubMed ID: 10454593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.