BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23275508)

  • 1. Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260.
    Kawai S; Goda-Tsutsumi M; Yakushi T; Kano K; Matsushita K
    Appl Environ Microbiol; 2013 Mar; 79(5):1654-60. PubMed ID: 23275508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus.
    Kataoka N; Matsutani M; Yakushi T; Matsushita K
    Appl Environ Microbiol; 2015 May; 81(10):3552-60. PubMed ID: 25769838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of the alternative sweetener 5-ketofructose from sucrose by fructose dehydrogenase and invertase producing Gluconobacter strains.
    Hoffmann JJ; Hövels M; Kosciow K; Deppenmeier U
    J Biotechnol; 2020 Jan; 307():164-174. PubMed ID: 31704125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-Keto-D-fructose production from sugar alcohol by isolated wild strain
    Adachi O; Nguyen TM; Hours RA; Kataoka N; Matsushita K; Akakabe Y; Yakushi T
    Biosci Biotechnol Biochem; 2020 Aug; 84(8):1745-1747. PubMed ID: 32427050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase.
    Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R
    Anal Bioanal Chem; 2018 May; 410(14):3253-3264. PubMed ID: 29564502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains.
    Siemen A; Kosciow K; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1699-1710. PubMed ID: 29279957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption.
    Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K
    Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 5-Ketofructose Reductase of
    Nguyen TM; Goto M; Noda S; Matsutani M; Hodoya Y; Kataoka N; Adachi O; Matsushita K; Yakushi T
    J Bacteriol; 2021 Sep; 203(19):e0055820. PubMed ID: 34309403
    [No Abstract]   [Full Text] [Related]  

  • 10. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase.
    Saichana I; Moonmangmee D; Adachi O; Matsushita K; Toyama H
    Appl Environ Microbiol; 2009 Jul; 75(13):4240-7. PubMed ID: 19411430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Flavin-Dependent Fructose Dehydrogenase with Cytochrome c as Basis for the Construction of Biomacromolecular Architectures on Electrodes.
    Wettstein C; Kano K; Schäfer D; Wollenberger U; Lisdat F
    Anal Chem; 2016 Jun; 88(12):6382-9. PubMed ID: 27213223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioelectrocatalytic performance of d-fructose dehydrogenase.
    Adachi T; Kaida Y; Kitazumi Y; Shirai O; Kano K
    Bioelectrochemistry; 2019 Oct; 129():1-9. PubMed ID: 31063949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved heterologous expression of the membrane-bound quinoprotein quinate dehydrogenase from Gluconobacter oxydans.
    Yakushi T; Komatsu K; Matsutani M; Kataoka N; Vangnai AS; Toyama H; Adachi O; Matsushita K
    Protein Expr Purif; 2018 May; 145():100-107. PubMed ID: 29366965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.
    Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K
    Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase.
    Wohlers K; Wirtz A; Reiter A; Oldiges M; Baumgart M; Bott M
    Microb Biotechnol; 2021 Nov; 14(6):2592-2604. PubMed ID: 34437751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain.
    Saito Y; Ishii Y; Hayashi H; Imao Y; Akashi T; Yoshikawa K; Noguchi Y; Soeda S; Yoshida M; Niwa M; Hosoda J; Shimomura K
    Appl Environ Microbiol; 1997 Feb; 63(2):454-60. PubMed ID: 9023923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans.
    Shi L; Li K; Zhang H; Liu X; Lin J; Wei D
    J Biotechnol; 2014 Apr; 175():69-74. PubMed ID: 24530540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reagentless D-Tagatose Biosensors Based on the Oriented Immobilization of Fructose Dehydrogenase onto Coated Gold Nanoparticles- or Reduced Graphene Oxide-Modified Surfaces: Application in a Prototype Bioreactor.
    Šakinytė I; Butkevičius M; Gurevičienė V; Stankevičiūtė J; Meškys R; Razumienė J
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of 3 phylogenetically distinct membrane-bound d-gluconate dehydrogenases of Gluconobacter spp. and their biotechnological application for efficient 2-keto-d-gluconate production.
    Kataoka N; Saichana N; Matsutani M; Toyama H; Matsushita K; Yakushi T
    Biosci Biotechnol Biochem; 2022 Apr; 86(5):681-690. PubMed ID: 35150230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.