These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 23275562)

  • 21. Transcriptional and translational S-box riboswitches differ in ligand-binding properties.
    Bhagdikar D; Grundy FJ; Henkin TM
    J Biol Chem; 2020 May; 295(20):6849-6860. PubMed ID: 32209653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.
    Espah Borujeni A; Mishler DM; Wang J; Huso W; Salis HM
    Nucleic Acids Res; 2016 Jan; 44(1):1-13. PubMed ID: 26621913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property.
    Cui W; Cheng J; Miao S; Zhou L; Liu Z; Guo J; Zhou Z
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2107-2120. PubMed ID: 27986992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
    Deigan KE; Ferré-D'Amaré AR
    Acc Chem Res; 2011 Dec; 44(12):1329-38. PubMed ID: 21615107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Riboswitches: From living biosensors to novel targets of antibiotics.
    Mehdizadeh Aghdam E; Hejazi MS; Barzegar A
    Gene; 2016 Nov; 592(2):244-59. PubMed ID: 27432066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Methods for Modeling Aptamers and Designing Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A family of synthetic riboswitches adopts a kinetic trapping mechanism.
    Mishler DM; Gallivan JP
    Nucleic Acids Res; 2014 Jun; 42(10):6753-61. PubMed ID: 24782524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding.
    Chen H; Egger M; Xu X; Flemmich L; Krasheninina O; Sun A; Micura R; Ren A
    Nucleic Acids Res; 2020 Dec; 48(21):12394-12406. PubMed ID: 33170270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research.
    Wrist A; Sun W; Summers RM
    ACS Synth Biol; 2020 Apr; 9(4):682-697. PubMed ID: 32142605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.
    Poiata E; Meyer MM; Ames TD; Breaker RR
    RNA; 2009 Nov; 15(11):2046-56. PubMed ID: 19776155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of alphavirus-based gene expression using engineered riboswitches.
    Bell CL; Yu D; Smolke CD; Geall AJ; Beard CW; Mason PW
    Virology; 2015 Sep; 483():302-11. PubMed ID: 26005949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rewiring Riboswitches to Create New Genetic Circuits in Bacteria.
    Robinson CJ; Medina-Stacey D; Wu MC; Vincent HA; Micklefield J
    Methods Enzymol; 2016; 575():319-48. PubMed ID: 27417935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges of ligand identification for riboswitch candidates.
    Meyer MM; Hammond MC; Salinas Y; Roth A; Sudarsan N; Breaker RR
    RNA Biol; 2011; 8(1):5-10. PubMed ID: 21317561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modular arrangement of regulatory RNA elements.
    Roßmanith J; Narberhaus F
    RNA Biol; 2017 Mar; 14(3):287-292. PubMed ID: 28010165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA Design Principles for Riboswitches that Regulate RNase P-Mediated tRNA Processing.
    Ender A; Stadler PF; Mörl M; Findeiß S
    Methods Mol Biol; 2022; 2518():179-202. PubMed ID: 35666446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Riboswitch control of Rho-dependent transcription termination.
    Hollands K; Proshkin S; Sklyarova S; Epshtein V; Mironov A; Nudler E; Groisman EA
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5376-81. PubMed ID: 22431636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.