These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 23275571)
1. RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus. Ishimaru D; Plant EP; Sims AC; Yount BL; Roth BM; Eldho NV; Pérez-Alvarado GC; Armbruster DW; Baric RS; Dinman JD; Taylor DR; Hennig M Nucleic Acids Res; 2013 Feb; 41(4):2594-608. PubMed ID: 23275571 [TBL] [Abstract][Full Text] [Related]
2. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus. Su MC; Chang CT; Chu CH; Tsai CH; Chang KY Nucleic Acids Res; 2005; 33(13):4265-75. PubMed ID: 16055920 [TBL] [Abstract][Full Text] [Related]
3. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Baranov PV; Henderson CM; Anderson CB; Gesteland RF; Atkins JF; Howard MT Virology; 2005 Feb; 332(2):498-510. PubMed ID: 15680415 [TBL] [Abstract][Full Text] [Related]
4. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. Plant EP; Pérez-Alvarado GC; Jacobs JL; Mukhopadhyay B; Hennig M; Dinman JD PLoS Biol; 2005 Jun; 3(6):e172. PubMed ID: 15884978 [TBL] [Abstract][Full Text] [Related]
5. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Ahn DG; Lee W; Choi JK; Kim SJ; Plant EP; Almazán F; Taylor DR; Enjuanes L; Oh JW Antiviral Res; 2011 Jul; 91(1):1-10. PubMed ID: 21549154 [TBL] [Abstract][Full Text] [Related]
6. Identification of RNA pseudoknot-binding ligand that inhibits the -1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. Park SJ; Kim YG; Park HJ J Am Chem Soc; 2011 Jul; 133(26):10094-100. PubMed ID: 21591761 [TBL] [Abstract][Full Text] [Related]
7. Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator. Lin YH; Chang KY Nucleic Acids Res; 2016 Oct; 44(18):9005-9015. PubMed ID: 27521370 [TBL] [Abstract][Full Text] [Related]
8. Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins. Cho CP; Lin SC; Chou MY; Hsu HT; Chang KY PLoS One; 2013; 8(4):e62283. PubMed ID: 23638024 [TBL] [Abstract][Full Text] [Related]
9. Identification of Hepta- and Octo-Uridine stretches as sole signals for programmed +1 and -1 ribosomal frameshifting during translation of SARS-CoV ORF 3a variants. Wang X; Wong SM; Liu DX Nucleic Acids Res; 2006; 34(4):1250-60. PubMed ID: 16500894 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). Kelly JA; Olson AN; Neupane K; Munshi S; San Emeterio J; Pollack L; Woodside MT; Dinman JD J Biol Chem; 2020 Jul; 295(31):10741-10748. PubMed ID: 32571880 [TBL] [Abstract][Full Text] [Related]
11. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting. Liphardt J; Napthine S; Kontos H; Brierley I J Mol Biol; 1999 May; 288(3):321-35. PubMed ID: 10329145 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshifting pseudoknot. Jones CP; Ferré-D'Amaré AR RNA; 2022 Feb; 28(2):239-249. PubMed ID: 34845084 [TBL] [Abstract][Full Text] [Related]
13. Elaborated pseudoknots that stimulate -1 programmed ribosomal frameshifting or stop codon readthrough in RNA viruses. Huang X; Du Z J Biomol Struct Dyn; 2023 Dec; ():1-13. PubMed ID: 38095458 [TBL] [Abstract][Full Text] [Related]
14. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999 [TBL] [Abstract][Full Text] [Related]
15. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Brierley I; Dos Ramos FJ Virus Res; 2006 Jul; 119(1):29-42. PubMed ID: 16310880 [TBL] [Abstract][Full Text] [Related]
16. The role of RNA pseudoknot stem 1 length in the promotion of efficient -1 ribosomal frameshifting. Napthine S; Liphardt J; Bloys A; Routledge S; Brierley I J Mol Biol; 1999 May; 288(3):305-20. PubMed ID: 10329144 [TBL] [Abstract][Full Text] [Related]
17. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting. Sun Y; Abriola L; Niederer RO; Pedersen SF; Alfajaro MM; Silva Monteiro V; Wilen CB; Ho YC; Gilbert WV; Surovtseva YV; Lindenbach BD; Guo JU Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34185680 [TBL] [Abstract][Full Text] [Related]
18. A Novel Frameshifting Inhibitor Having Antiviral Activity against Zoonotic Coronaviruses. Ahn DG; Yoon GY; Lee S; Ku KB; Kim C; Kim KD; Kwon YC; Kim GW; Kim BT; Kim SJ Viruses; 2021 Aug; 13(8):. PubMed ID: 34452503 [TBL] [Abstract][Full Text] [Related]
19. Stem-loop structures can effectively substitute for an RNA pseudoknot in -1 ribosomal frameshifting. Yu CH; Noteborn MH; Pleij CW; Olsthoorn RC Nucleic Acids Res; 2011 Nov; 39(20):8952-9. PubMed ID: 21803791 [TBL] [Abstract][Full Text] [Related]
20. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop. Peterson JM; Becker ST; O'Leary CA; Juneja P; Yang Y; Moss WN Biochemistry; 2024 May; 63(10):1287-1296. PubMed ID: 38727003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]