These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23275993)

  • 1. A study of the membrane transport of aminoacids in erythrocytes from patients on haemodialysis.
    Fervenza FC; Meredith D; Ellory JC; Hendry BM
    Nephrol Dial Transplant; 1990; 5(8):594-9. PubMed ID: 23275993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased lysine transport capacity in erythrocytes from patients with chronic renal failure.
    Fervenza FC; Harvey CM; Hendry BM; Ellory JC
    Clin Sci (Lond); 1989 Apr; 76(4):419-22. PubMed ID: 2496948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells.
    Young JD; Wolowyk MW; Jones SM; Ellory JC
    Biochem J; 1983 Nov; 216(2):349-57. PubMed ID: 6661202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA; Mason DK; Young JD
    Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of human erythrocyte choline transport in chronic renal failure.
    Riley SP; Talbot NJ; Ahmed MJ; Jouhal K; Hendry BM
    Nephrol Dial Transplant; 1997 Sep; 12(9):1921-7. PubMed ID: 9306344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell.
    Rosenberg R
    Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na- and Cl-dependent glycine transport in human red blood cells and ghosts. A study of the binding of substrates to the outward-facing carrier.
    King PA; Gunn RB
    J Gen Physiol; 1989 Feb; 93(2):321-42. PubMed ID: 2703819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human erythrocyte choline uptake in uraemia: the role of intracellular substrate and an investigation into the effects of haemodialysis.
    Flanagan GJ; O'Kelly J; Rae C; Winearls CG; Ellory JC
    Clin Sci (Lond); 1996 Sep; 91(3):353-8. PubMed ID: 8869419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of amino acids for glutathione biosynthesis in human and dog red cells.
    Ellory JC; Preston RL; Osotimehin B; Young JD
    Biomed Biochim Acta; 1983; 42(11-12):S48-52. PubMed ID: 6144310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of triiodothyronine transport and accumulation in rat erythrocytes.
    Osty J; Jego L; Francon J; Blondeau JP
    Endocrinology; 1988 Nov; 123(5):2303-11. PubMed ID: 3168926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine transport in human erythrocytes.
    Ellory JC; Jones SE; Young JD
    J Physiol; 1981 Nov; 320():403-22. PubMed ID: 7320944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of glycyl-L-leucine uptake by guinea-pig small intestine: relative importance of intact-peptide transport.
    Himukai M; Hoshi T
    J Physiol; 1980 May; 302():155-69. PubMed ID: 7411452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of diet-induced obesity on kinetic parameters of amino acid uptake by rat erythrocytes.
    Picó C; Pons A; Palou A
    Biochem Int; 1992 Nov; 28(3):509-17. PubMed ID: 1482391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of acidic, basic and neutral amino acid transport in the perfused rat hindlimb.
    Hundal HS; Rennie MJ; Watt PW
    J Physiol; 1989 Jan; 408():93-114. PubMed ID: 2506342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in glycine and leucine transport during red cell maturation in the rat.
    Felipe A; Viñas O; Remesar X
    Biosci Rep; 1990 Apr; 10(2):209-16. PubMed ID: 2357485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal erythrocyte choline transport in patients with chronic renal failure.
    Fervenza FC; Meredith D; Ellory JC; Hendry BM
    Clin Sci (Lond); 1991 Feb; 80(2):137-41. PubMed ID: 1848165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison in normal individuals and sickle cell patients of reduced glutathione precursors and their transport between plasma and red cells.
    Kiessling K; Roberts N; Gibson JS; Ellory JC
    Hematol J; 2000; 1(4):243-9. PubMed ID: 11920197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral amino acid transport by isolated small intestinal cells from guinea pigs.
    Del Castillo JR; Muñiz R
    Am J Physiol; 1991 Dec; 261(6 Pt 1):G1030-6. PubMed ID: 1767844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between thyroid hormone transport and neutral amino acid transport in JAR human choriocarcinoma cells.
    Prasad PD; Leibach FH; Mahesh VB; Ganapathy V
    Endocrinology; 1994 Feb; 134(2):574-81. PubMed ID: 8299556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol group control of sodium-lithium countertransport kinetics in uraemia: evidence of a membrane abnormality affected by haemodialysis.
    Rutherford PA; Thomas TH; O'Kelly J; West IC; Wilkinson R
    Nephron; 1996; 72(2):184-8. PubMed ID: 8684524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.