These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23276151)

  • 1. Simple and efficient strategy for site-specific dual labeling of proteins for single-molecule fluorescence resonance energy transfer analysis.
    Kim J; Seo MH; Lee S; Cho K; Yang A; Woo K; Kim HS; Park HS
    Anal Chem; 2013 Feb; 85(3):1468-74. PubMed ID: 23276151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient single-molecule fluorescence resonance energy transfer analysis by site-specific dual-labeling of protein using an unnatural amino acid.
    Seo MH; Lee TS; Kim E; Cho YL; Park HS; Yoon TY; Kim HS
    Anal Chem; 2011 Dec; 83(23):8849-54. PubMed ID: 22035235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Click strategies for single-molecule protein fluorescence.
    Milles S; Tyagi S; Banterle N; Koehler C; VanDelinder V; Plass T; Neal AP; Lemke EA
    J Am Chem Soc; 2012 Mar; 134(11):5187-95. PubMed ID: 22356317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeling proteins for single-molecule FRET.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Sep; 2012(9):1009-12. PubMed ID: 22949718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategy for efficient site-specific FRET-dye labeling of ubiquitin.
    Kao MW; Yang LL; Lin JC; Lim TS; Fann W; Chen RP
    Bioconjug Chem; 2008 Jun; 19(6):1124-6. PubMed ID: 18507427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET.
    Wang K; Sachdeva A; Cox DJ; Wilf NM; Lang K; Wallace S; Mehl RA; Chin JW
    Nat Chem; 2014 May; 6(5):393-403. PubMed ID: 24755590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific two-color protein labeling for FRET studies using split inteins.
    Yang JY; Yang WY
    J Am Chem Soc; 2009 Aug; 131(33):11644-5. PubMed ID: 19645470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific labeling of proteins for single-molecule FRET measurements using genetically encoded ketone functionalities.
    Lemke EA
    Methods Mol Biol; 2011; 751():3-15. PubMed ID: 21674321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome structure and dynamics by smFRET microscopy.
    Shebl B; Norman Z; Cornish PV
    Methods Enzymol; 2014; 549():375-406. PubMed ID: 25432757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A promiscuous aminoacyl-tRNA synthetase that incorporates cysteine, methionine, and alanine homologs into proteins.
    Brustad E; Bushey ML; Brock A; Chittuluru J; Schultz PG
    Bioorg Med Chem Lett; 2008 Nov; 18(22):6004-6. PubMed ID: 18845434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-fluorophore fluorescence resonance energy transfer for probing nucleic acids structure and folding.
    Liu J; Lu Y
    Methods Mol Biol; 2006; 335():257-71. PubMed ID: 16785633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonfluorescent quenchers to correlate single-molecule conformational and compositional dynamics.
    Chen J; Tsai A; Petrov A; Puglisi JD
    J Am Chem Soc; 2012 Apr; 134(13):5734-7. PubMed ID: 22428667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal single-molecule FRET for protein conformational dynamics.
    Tan YW; Hanson JA; Chu JW; Yang H
    Methods Mol Biol; 2014; 1084():51-62. PubMed ID: 24061915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing protein folding using site-specifically encoded unnatural amino acids as FRET donors with tryptophan.
    Miyake-Stoner SJ; Miller AM; Hammill JT; Peeler JC; Hess KR; Mehl RA; Brewer SH
    Biochemistry; 2009 Jun; 48(25):5953-62. PubMed ID: 19492814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotranslational Incorporation into Proteins of a Fluorophore Suitable for smFRET Studies.
    Sadoine M; Cerminara M; Gerrits M; Fitter J; Katranidis A
    ACS Synth Biol; 2018 Feb; 7(2):405-411. PubMed ID: 29370697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general and efficient method for the site-specific dual-labeling of proteins for single molecule fluorescence resonance energy transfer.
    Brustad EM; Lemke EA; Schultz PG; Deniz AA
    J Am Chem Soc; 2008 Dec; 130(52):17664-5. PubMed ID: 19108697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeling DNA (or RNA) for single-molecule FRET.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Sep; 2012(9):1005-8. PubMed ID: 22949717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of an intramolecular three-color fluorescence resonance energy transfer probe by site-specific protein labeling.
    Voss S; Zhao L; Chen X; Gerhard F; Wu YW
    J Pept Sci; 2014 Feb; 20(2):115-20. PubMed ID: 24395760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids.
    Kajihara D; Abe R; Iijima I; Komiyama C; Sisido M; Hohsaka T
    Nat Methods; 2006 Nov; 3(11):923-9. PubMed ID: 17060916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced system for unnatural amino acid mutagenesis in E. coli.
    Young TS; Ahmad I; Yin JA; Schultz PG
    J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.