BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 23276251)

  • 21. Particulate emission factors for mobile fossil fuel and biomass combustion sources.
    Watson JG; Chow JC; Chen LW; Lowenthal DH; Fujita EM; Kuhns HD; Sodeman DA; Campbell DE; Moosmüller H; Zhu D; Motallebi N
    Sci Total Environ; 2011 May; 409(12):2384-96. PubMed ID: 21458027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.
    Kim HC; Wallington TJ
    Environ Sci Technol; 2016 Oct; 50(20):11226-11233. PubMed ID: 27533735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the co-benefits of greenhouse gas reduction: health benefits of particulate matter related inspection and maintenance programs in Bangkok, Thailand.
    Li Y; Crawford-Brown DJ
    Sci Total Environ; 2011 Apr; 409(10):1774-85. PubMed ID: 21334726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Health benefits of vehicle electrification through air pollution in Shanghai, China.
    Zhang S; Jiang Y; Zhang S; Choma EF
    Sci Total Environ; 2024 Mar; 914():169859. PubMed ID: 38190893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles.
    Shen W; Han W; Wallington TJ; Winkler SL
    Environ Sci Technol; 2019 May; 53(10):6063-6072. PubMed ID: 31021614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.
    Peterson SB; Whitacre JF; Apt J
    Environ Sci Technol; 2011 Mar; 45(5):1792-7. PubMed ID: 21309508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.
    Delucchi MA; Yang C; Burke AF; Ogden JM; Kurani K; Kessler J; Sperling D
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2006):20120325. PubMed ID: 24298079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of ethanol blended fuels for gasoline vehicles in China: Fuel economy, regulated gaseous pollutants and particulate matter.
    Wu X; Zhang S; Guo X; Yang Z; Liu J; He L; Zheng X; Han L; Liu H; Wu Y
    Environ Pollut; 2019 Oct; 253():731-740. PubMed ID: 31336351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.
    Frey HC; Zhai H; Rouphail NM
    Environ Sci Technol; 2009 Nov; 43(21):8449-55. PubMed ID: 19924983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles.
    Wu D; Guo F; Field FR; De Kleine RD; Kim HC; Wallington TJ; Kirchain RE
    Environ Sci Technol; 2019 Sep; 53(18):10560-10570. PubMed ID: 31336049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
    Choi DG; Kreikebaum F; Thomas VM; Divan D
    Environ Sci Technol; 2013 Sep; 47(18):10703-7. PubMed ID: 23875888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Economic and Climate Benefits of Electric Vehicles in China, the United States, and Germany.
    He X; Zhang S; Wu Y; Wallington TJ; Lu X; Tamor MA; McElroy MB; Zhang KM; Nielsen CP; Hao J
    Environ Sci Technol; 2019 Sep; 53(18):11013-11022. PubMed ID: 31415163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accounting for climate and air quality damages in future U.S. electricity generation scenarios.
    Brown KE; Henze DK; Milford JB
    Environ Sci Technol; 2013 Apr; 47(7):3065-72. PubMed ID: 23465362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.
    Luk JM; Saville BA; MacLean HL
    Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.
    Graver BM; Frey HC; Choi HW
    Environ Sci Technol; 2011 Oct; 45(20):9044-51. PubMed ID: 21902202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.
    Brinkman GL; Denholm P; Hannigan MP; Milford JB
    Environ Sci Technol; 2010 Aug; 44(16):6256-62. PubMed ID: 20704224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
    Burnham A; Han J; Clark CE; Wang M; Dunn JB; Palou-Rivera I
    Environ Sci Technol; 2012 Jan; 46(2):619-27. PubMed ID: 22107036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A; Azevedo IM; Michalek JJ
    Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-world particulate matter and gaseous emissions from motor vehicles in a highway tunnel.
    Gertler AW; Gillies JA; Pierson WR; Rogers CF; Sagebiel JC; Abu-Allaban M; Coulombe W; Tarnay L; Cahill TA
    Res Rep Health Eff Inst; 2002 Jan; (107):5-56; discussion 79-92. PubMed ID: 11954677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Life-Cycle Comparison of Alternative Automobile Fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-1779. PubMed ID: 28076232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.