BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23276526)

  • 21. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic performance of nanosized Pt-Au alloy catalyst in oxidation of methanol and toluene.
    Kim KJ; Kim YH; Ahn HG
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3795-9. PubMed ID: 18047061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental routes for platinum group elements to biological materials--a review.
    Ek KH; Morrison GM; Rauch S
    Sci Total Environ; 2004 Dec; 334-335():21-38. PubMed ID: 15504490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles.
    Tao F; Grass ME; Zhang Y; Butcher DR; Renzas JR; Liu Z; Chung JY; Mun BS; Salmeron M; Somorjai GA
    Science; 2008 Nov; 322(5903):932-4. PubMed ID: 18845713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid.
    Zhao Q; Ge C; Cai Y; Qiao Q; Jia X
    J Colloid Interface Sci; 2018 Mar; 514():425-432. PubMed ID: 29278798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity.
    Singh RK; Rahul R; Neergat M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13044-51. PubMed ID: 23817297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural, compositional and electrochemical characterization of Pt-Co oxygen-reduction catalysts.
    Axnanda S; Cummins KD; He T; Goodman DW; Soriaga MP
    Chemphyschem; 2010 May; 11(7):1468-75. PubMed ID: 20394098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activated carbon fibers impregnated with Pd and Pt catalysts for toluene removal.
    Liu ZS; Chen JY; Peng YH
    J Hazard Mater; 2013 Jul; 256-257():49-55. PubMed ID: 23669790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructure and surface composition of Pt and Ru binary catalysts on polyaniline-functionalized carbon nanotubes.
    Lee HY; Vogel W; Chu PP
    Langmuir; 2011 Dec; 27(23):14654-61. PubMed ID: 21916494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NO Chemisorption on Pt(111), Rh/Pt(111), and Pd/Pt(111).
    Tang H; Trout BL
    J Phys Chem B; 2005 Sep; 109(37):17630-4. PubMed ID: 16853256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd.
    Zhang H; Jin M; Xia Y
    Chem Soc Rev; 2012 Dec; 41(24):8035-49. PubMed ID: 23080521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.
    Tuaev X; Rudi S; Petkov V; Hoell A; Strasser P
    ACS Nano; 2013 Jul; 7(7):5666-74. PubMed ID: 23805992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale.
    Oezaslan M; Heggen M; Strasser P
    J Am Chem Soc; 2012 Jan; 134(1):514-24. PubMed ID: 22129031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Palladium oxidation leads to methane combustion activity: Effects of particle size and alloying with platinum.
    Goodman ED; Ye AA; Aitbekova A; Mueller O; Riscoe AR; Nguyen Taylor T; Hoffman AS; Boubnov A; Bustillo KC; Nachtegaal M; Bare SR; Cargnello M
    J Chem Phys; 2019 Oct; 151(15):154703. PubMed ID: 31640349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverse gas chromatographic investigation of the effect of hydrogen in carbon monoxide adsorption over silica supported Rh and Pt-Rh alloy catalysts, under hydrogen-rich conditions.
    Gavril D; Loukopoulos V; Georgaka A; Gabriel A; Karaiskakis G
    J Chromatogr A; 2005 Sep; 1087(1-2):158-68. PubMed ID: 16130709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Cu/Pt near-surface alloy for water-gas shift catalysis.
    Knudsen J; Nilekar AU; Vang RT; Schnadt J; Kunkes EL; Dumesic JA; Mavrikakis M; Besenbacher F
    J Am Chem Soc; 2007 May; 129(20):6485-90. PubMed ID: 17469820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pd@Pt Core-Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction.
    Datta KJ; Datta KK; Gawande MB; Ranc V; Čépe K; Malgras V; Yamauchi Y; Varma RS; Zboril R
    Chemistry; 2016 Jan; 22(5):1577-81. PubMed ID: 26455725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trapping of Mobile Pt Species by PdO Nanoparticles under Oxidizing Conditions.
    Carrillo C; Johns TR; Xiong H; DeLaRiva A; Challa SR; Goeke RS; Artyushkova K; Li W; Kim CH; Datye AK
    J Phys Chem Lett; 2014 Jun; 5(12):2089-93. PubMed ID: 26270497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.