These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23276916)

  • 1. Responding to toxic compounds: a genomic and functional overview of Archaea.
    Bartolucci S; Contursi P; Fiorentino G; Limauro D; Pedone E
    Front Biosci (Landmark Ed); 2013 Jan; 18(1):165-89. PubMed ID: 23276916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Archaeal transformation of metals in the environment.
    Bini E
    FEMS Microbiol Ecol; 2010 Jul; 73(1):1-16. PubMed ID: 20455933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal resistance in halophilic Bacteria and Archaea.
    Voica DM; Bartha L; Banciu HL; Oren A
    FEMS Microbiol Lett; 2016 Jul; 363(14):. PubMed ID: 27279625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing and adapting to environmental stress: the archaeal tactic.
    Pedone E; Bartolucci S; Fiorentino G
    Front Biosci; 2004 Sep; 9():2909-26. PubMed ID: 15353325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments.
    Edbeib MF; Wahab RA; Huyop F
    World J Microbiol Biotechnol; 2016 Aug; 32(8):135. PubMed ID: 27344438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.
    Navarro CA; von Bernath D; Jerez CA
    Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into environmental bioremediation by microorganisms through functional genomics and proteomics.
    Zhao B; Poh CL
    Proteomics; 2008 Feb; 8(4):874-81. PubMed ID: 18210372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for anaerobic conversion of xenobiotics.
    Mogensen AS; Dolfing J; Haagensen F; Ahring BK
    Adv Biochem Eng Biotechnol; 2003; 82():69-134. PubMed ID: 12747566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf.
    Al-Mailem DM; Sorkhoh NA; Al-Awadhi H; Eliyas M; Radwan SS
    Extremophiles; 2010 May; 14(3):321-8. PubMed ID: 20364355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal and organic pollutants bioremediation by extremophile microorganisms.
    Giovanella P; Vieira GAL; Ramos Otero IV; Pais Pellizzer E; de Jesus Fontes B; Sette LD
    J Hazard Mater; 2020 Jan; 382():121024. PubMed ID: 31541933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites.
    Ceci A; Pinzari F; Russo F; Persiani AM; Gadd GM
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):53-68. PubMed ID: 30362074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic degradation of pollutants.
    Parales RE; Haddock JD
    Curr Opin Biotechnol; 2004 Aug; 15(4):374-9. PubMed ID: 15296933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity and Niche of Archaea in Bioremediation.
    Krzmarzick MJ; Taylor DK; Fu X; McCutchan AL
    Archaea; 2018; 2018():3194108. PubMed ID: 30254509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
    Coombs JM; Barkay T
    Appl Environ Microbiol; 2005 Nov; 71(11):7083-91. PubMed ID: 16269744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics.
    Cameron MD; Timofeevski S; Aust SD
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):751-8. PubMed ID: 11152065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments.
    Rocchetti L; Beolchini F; Hallberg KB; Johnson DB; Dell'Anno A
    Mar Pollut Bull; 2012 Aug; 64(8):1688-98. PubMed ID: 22748839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics.
    Eyers L; George I; Schuler L; Stenuit B; Agathos SN; El Fantroussi S
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):123-30. PubMed ID: 15316685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic adaptation to eutrophication of ammonia-oxidizing archaea in the Pearl River estuary.
    Zou D; Li Y; Kao SJ; Liu H; Li M
    Environ Microbiol; 2019 Jul; 21(7):2320-2332. PubMed ID: 30924222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles.
    Mesbah NM; Wiegel J
    Appl Environ Microbiol; 2012 Jun; 78(12):4074-82. PubMed ID: 22492435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.