These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23277057)

  • 1. Biomimetic materials for controlling bone cell responses.
    Drevelle O; Faucheux N
    Front Biosci (Schol Ed); 2013 Jan; 5(1):369-95. PubMed ID: 23277057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between bone cells and biomaterials: An update.
    Beauvais S; Drevelle O; Jann J; Lauzon MA; Foruzanmehr M; Grenier G; Roux S; Faucheux N
    Front Biosci (Schol Ed); 2016 Jun; 8(2):227-63. PubMed ID: 27100704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic coatings for bone tissue engineering of critical-sized defects.
    Liu Y; Wu G; de Groot K
    J R Soc Interface; 2010 Oct; 7 Suppl 5(Suppl 5):S631-47. PubMed ID: 20484228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoinductive biomaterials--properties and relevance in bone repair.
    Habibovic P; de Groot K
    J Tissue Eng Regen Med; 2007; 1(1):25-32. PubMed ID: 18038389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in osteobiologic materials for bone substitutes.
    Hasan A; Byambaa B; Morshed M; Cheikh MI; Shakoor RA; Mustafy T; Marei HE
    J Tissue Eng Regen Med; 2018 Jun; 12(6):1448-1468. PubMed ID: 29701908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues.
    Stevens B; Yang Y; Mohandas A; Stucker B; Nguyen KT
    J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):573-82. PubMed ID: 17937408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone cells-biomaterials interactions.
    Marquis ME; Lord E; Bergeron E; Drevelle O; Park H; Cabana F; Senta H; Faucheux N
    Front Biosci (Landmark Ed); 2009 Jan; 14(3):1023-67. PubMed ID: 19273115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomineralization-Inspired Material Design for Bone Regeneration.
    de Melo Pereira D; Habibovic P
    Adv Healthc Mater; 2018 Nov; 7(22):e1800700. PubMed ID: 30240157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.
    Salgado CL; Grenho L; Fernandes MH; Colaço BJ; Monteiro FJ
    J Biomed Mater Res A; 2016 Jan; 104(1):57-70. PubMed ID: 26179958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoinduction of bone grafting materials for bone repair and regeneration.
    García-Gareta E; Coathup MJ; Blunn GW
    Bone; 2015 Dec; 81():112-121. PubMed ID: 26163110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review.
    Sculean A; Nikolidakis D; Nikou G; Ivanovic A; Chapple IL; Stavropoulos A
    Periodontol 2000; 2015 Jun; 68(1):182-216. PubMed ID: 25867987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides for bone tissue engineering.
    Visser R; Rico-Llanos GA; Pulkkinen H; Becerra J
    J Control Release; 2016 Dec; 244(Pt A):122-135. PubMed ID: 27794492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the Geometrical Structure of a Honeycomb TCP on Relationship between Bone / Cartilage Formation and Angiogenesis.
    Matsuda H; Takabatake K; Tsujigiwa H; Watanabe S; Ito S; Kawai H; Hamada M; Yoshida S; Nakano K; Nagatsuka H
    Int J Med Sci; 2018; 15(14):1582-1590. PubMed ID: 30588180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone tissue engineering: Anionic polysaccharides as promising scaffolds.
    Sivakumar PM; Yetisgin AA; Sahin SB; Demir E; Cetinel S
    Carbohydr Polym; 2022 May; 283():119142. PubMed ID: 35153015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration.
    Bahrami S; Baheiraei N; Shahrezaee M
    Sci Rep; 2021 Aug; 11(1):16783. PubMed ID: 34408206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies.
    Magri AMP; Parisi JR; de Andrade ALM; Rennó ACM
    J Biomed Mater Res A; 2021 Sep; 109(9):1765-1775. PubMed ID: 33733598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration.
    Kang MH; Lee H; Jang TS; Seong YJ; Kim HE; Koh YH; Song J; Jung HD
    Acta Biomater; 2019 Jan; 84():453-467. PubMed ID: 30500444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration.
    Lin KF; He S; Song Y; Wang CM; Gao Y; Li JQ; Tang P; Wang Z; Bi L; Pei GX
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6905-16. PubMed ID: 26930140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.