These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 23277585)

  • 41. Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases.
    Luque I; Riera-Alberola ML; Andújar A; Ochoa de Alda JA
    Mol Biol Evol; 2008 Nov; 25(11):2369-89. PubMed ID: 18775898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes.
    Reyes-Prieto A; Moustafa A
    Sci Rep; 2012; 2():955. PubMed ID: 23233874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of the hli gene family in marine and freshwater cyanobacteria.
    Bhaya D; Dufresne A; Vaulot D; Grossman A
    FEMS Microbiol Lett; 2002 Oct; 215(2):209-19. PubMed ID: 12399037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids.
    Moore KR; Magnabosco C; Momper L; Gold DA; Bosak T; Fournier GP
    Front Microbiol; 2019; 10():1612. PubMed ID: 31354692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria.
    Chen HS; Liberton M; Pakrasi HB; Niedzwiedzki DM
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):249-258. PubMed ID: 28077273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community.
    Hughes RA; Zhang Y; Zhang R; Williams PG; Lindsey JS; Miller ES
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754701
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diversity and specificity of molecular functions in cyanobacterial symbionts.
    Cameron ES; Sanchez S; Goldman N; Blaxter ML; Finn RD
    Sci Rep; 2024 Aug; 14(1):18658. PubMed ID: 39134591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A cyanobacterial gene in nonphotosynthetic protists--an early chloroplast acquisition in eukaryotes?
    Andersson JO; Roger AJ
    Curr Biol; 2002 Jan; 12(2):115-9. PubMed ID: 11818061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.
    Voorhies AA; Biddanda BA; Kendall ST; Jain S; Marcus DN; Nold SC; Sheldon ND; Dick GJ
    Geobiology; 2012 May; 10(3):250-67. PubMed ID: 22404795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome Streamlining, Plasticity, and Metabolic Versatility Distinguish Co-occurring Toxic and Nontoxic Cyanobacterial Strains of
    Tee HS; Wood SA; Bouma-Gregson K; Lear G; Handley KM
    mBio; 2021 Oct; 12(5):e0223521. PubMed ID: 34700377
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: implications for the ecological niche.
    Miller SR; Wood AM; Blankenship RE; Kim M; Ferriera S
    Genome Biol Evol; 2011; 3():601-13. PubMed ID: 21697100
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering.
    Stucken K; Koch R; Dagan T
    Biol Res; 2013; 46(4):373-82. PubMed ID: 24510140
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of the inner light-harvesting antenna protein family of cyanobacteria, algae, and plants.
    Zhang Y; Chen M; Zhou BB; Jermiin LS; Larkum AW
    J Mol Evol; 2007 Mar; 64(3):321-31. PubMed ID: 17273917
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits.
    Qin X; Pi X; Wang W; Han G; Zhu L; Liu M; Cheng L; Shen JR; Kuang T; Sui SF
    Nat Plants; 2019 Mar; 5(3):263-272. PubMed ID: 30850820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Origin and evolution of the light-dependent protochlorophyllide oxidoreductase (LPOR) genes.
    Yang J; Cheng Q
    Plant Biol (Stuttg); 2004 Sep; 6(5):537-44. PubMed ID: 15375724
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts.
    Tomitani A; Okada K; Miyashita H; Matthijs HC; Ohno T; Tanaka A
    Nature; 1999 Jul; 400(6740):159-62. PubMed ID: 10408441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide survey of putative serine/threonine protein kinases in cyanobacteria.
    Zhang X; Zhao F; Guan X; Yang Y; Liang C; Qin S
    BMC Genomics; 2007 Oct; 8():395. PubMed ID: 17971218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phylogenetic analyses of the core antenna domain: investigating the origin of photosystem I.
    Mix LJ; Haig D; Cavanaugh CM
    J Mol Evol; 2005 Feb; 60(2):153-63. PubMed ID: 15785845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity.
    Kleigrewe K; Gerwick L; Sherman DH; Gerwick WH
    Nat Prod Rep; 2016 Feb; 33(2):348-64. PubMed ID: 26758451
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria.
    Calteau A; Fewer DP; Latifi A; Coursin T; Laurent T; Jokela J; Kerfeld CA; Sivonen K; Piel J; Gugger M
    BMC Genomics; 2014 Nov; 15(1):977. PubMed ID: 25404466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.