These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23277676)
1. Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks. Clair EC; Ogren JI; Mamaev S; Kralj JM; Rothschild KJ J Biol Phys; 2012 Jan; 38(1):153-68. PubMed ID: 23277676 [TBL] [Abstract][Full Text] [Related]
2. Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential. Saint Clair EC; Ogren JI; Mamaev S; Russano D; Kralj JM; Rothschild KJ J Phys Chem B; 2012 Dec; 116(50):14592-601. PubMed ID: 23189985 [TBL] [Abstract][Full Text] [Related]
3. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719 [TBL] [Abstract][Full Text] [Related]
4. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M; Kandori H Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin. Wang J; El-Sayed MA Biophys J; 2001 Feb; 80(2):961-71. PubMed ID: 11159463 [TBL] [Abstract][Full Text] [Related]
6. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
7. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Luecke H Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596 [TBL] [Abstract][Full Text] [Related]
8. Converting a light-driven proton pump into a light-gated proton channel. Inoue K; Tsukamoto T; Shimono K; Suzuki Y; Miyauchi S; Hayashi S; Kandori H; Sudo Y J Am Chem Soc; 2015 Mar; 137(9):3291-9. PubMed ID: 25712566 [TBL] [Abstract][Full Text] [Related]
9. Altered hydrogen bonding of Arg82 during the proton pump cycle of bacteriorhodopsin: a low-temperature polarized FTIR spectroscopic study. Tanimoto T; Shibata M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2004 Jul; 43(29):9439-47. PubMed ID: 15260486 [TBL] [Abstract][Full Text] [Related]
10. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
11. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K. Ono H; Inoue K; Abe-Yoshizumi R; Kandori H J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264 [TBL] [Abstract][Full Text] [Related]
12. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
13. Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. Ganapathy S; Kratz S; Chen Q; Hellingwerf KJ; de Groot HJM; Rothschild KJ; de Grip WJ Photochem Photobiol; 2019 Jul; 95(4):959-968. PubMed ID: 30860604 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M; Ihara K; Kandori H Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of archaerhodopsin-1 and -2: Common structural motif in archaeal light-driven proton pumps. Enami N; Yoshimura K; Murakami M; Okumura H; Ihara K; Kouyama T J Mol Biol; 2006 May; 358(3):675-85. PubMed ID: 16540121 [TBL] [Abstract][Full Text] [Related]
16. The assignment of the different infrared continuum absorbance changes observed in the 3000-1800-cm(-1) region during the bacteriorhodopsin photocycle. Garczarek F; Wang J; El-Sayed MA; Gerwert K Biophys J; 2004 Oct; 87(4):2676-82. PubMed ID: 15298873 [TBL] [Abstract][Full Text] [Related]
17. Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization. Hashimoto K; Choi AR; Furutani Y; Jung KH; Kandori H Biochemistry; 2010 Apr; 49(15):3343-50. PubMed ID: 20230053 [TBL] [Abstract][Full Text] [Related]
18. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins. Furutani Y; Shibata M; Kandori H Photochem Photobiol Sci; 2005 Sep; 4(9):661-6. PubMed ID: 16121274 [TBL] [Abstract][Full Text] [Related]
19. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Lanyi JK Biochim Biophys Acta; 1993 Dec; 1183(2):241-61. PubMed ID: 8268193 [TBL] [Abstract][Full Text] [Related]