These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23277944)

  • 21. Reversibility and isotope effect of the calorimetric glass --> liquid transition of low-density amorphous ice.
    Elsaesser MS; Winkel K; Mayer E; Loerting T
    Phys Chem Chem Phys; 2010 Jan; 12(3):708-12. PubMed ID: 20066356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calorimetric and relaxation properties of xylitol-water mixtures.
    Elamin K; Sjöström J; Jansson H; Swenson J
    J Chem Phys; 2012 Mar; 136(10):104508. PubMed ID: 22423849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vapor-deposited α,α,β-tris-naphthylbenzene glasses with low heat capacity and high kinetic stability.
    Whitaker KR; Ahrenberg M; Schick C; Ediger MD
    J Chem Phys; 2012 Oct; 137(15):154502. PubMed ID: 23083176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic stability and heat capacity of vapor-deposited glasses of o-terphenyl.
    Whitaker KR; Tylinski M; Ahrenberg M; Schick C; Ediger MD
    J Chem Phys; 2015 Aug; 143(8):084511. PubMed ID: 26328860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study.
    Leon-Gutierrez E; Sepúlveda A; Garcia G; Clavaguera-Mora MT; Rodríguez-Viejo J
    Phys Chem Chem Phys; 2010 Nov; 12(44):14693-8. PubMed ID: 20944849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calorimetric study of water's glass transition in nanoscale confinement, suggesting a value of 210 K for bulk water.
    Oguni M; Kanke Y; Nagoe A; Namba S
    J Phys Chem B; 2011 Dec; 115(48):14023-9. PubMed ID: 21853989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The glass transition behaviors of low-density amorphous ice films with different thicknesses.
    He C; Zhang W; Li Y
    J Chem Phys; 2010 Nov; 133(20):204504. PubMed ID: 21133443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of deeply supercooled ethanol in crystallization and solvation of LiI.
    Souda R
    J Phys Chem B; 2008 Mar; 112(9):2649-54. PubMed ID: 18260663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquidlike nature of crystalline n-butane and n-pentane films studied by time-of-flight secondary ion mass spectrometry.
    Souda R
    J Phys Chem B; 2009 Dec; 113(48):15831-5. PubMed ID: 19894690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The glass transition of water, based on hyperquenching experiments.
    Velikov V; Borick S; Angell CA
    Science; 2001 Dec; 294(5550):2335-8. PubMed ID: 11743196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glass transition and crystallization dynamics of thin CCl(2)F(2) films deposited on Ni(111), graphite, and water-ice films.
    Souda R
    J Chem Phys; 2009 Oct; 131(16):164501. PubMed ID: 19894950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s.
    Minakov AA; Schick C
    Rev Sci Instrum; 2007 Jul; 78(7):073902. PubMed ID: 17672768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calorimetric evidence for two distinct molecular packing arrangements in stable glasses of indomethacin.
    Kearns KL; Swallen SF; Ediger MD; Sun Y; Yu L
    J Phys Chem B; 2009 Feb; 113(6):1579-86. PubMed ID: 19154147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural changes in amorphous solid water films on heating to 120-140 K and 150-160 K seen by positronium annihilation spectroscopy.
    Townrow S; Coleman PG
    J Phys Condens Matter; 2015 Jun; 27(22):225401. PubMed ID: 25985151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystallization of zirconia based thin films.
    Stender D; Frison R; Conder K; Rupp JL; Scherrer B; Martynczuk JM; Gauckler LJ; Schneider CW; Lippert T; Wokaun A
    Phys Chem Chem Phys; 2015 Jul; 17(28):18613-20. PubMed ID: 26119755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus.
    Kearns KL; Krzyskowski P; Devereaux Z
    J Chem Phys; 2017 May; 146(20):203328. PubMed ID: 28571345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural relaxation of vapor-deposited water, methanol, ethanol, and 1-propanol films studied using low-energy ion scattering.
    Souda R
    J Phys Chem B; 2010 Sep; 114(34):11127-32. PubMed ID: 20695468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.
    Efremov MY; Kiyanova AV; Last J; Soofi SS; Thode C; Nealey PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021501. PubMed ID: 23005763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
    Magoń A; Pyda M
    Carbohydr Res; 2011 Nov; 346(16):2558-66. PubMed ID: 22000766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glass transition of low-density amorphous water and related structures.
    He C; Lian JS; Jiang Q
    J Phys Chem B; 2007 Sep; 111(38):11177-80. PubMed ID: 17784742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.