BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 23277945)

  • 1. On the absolute thermodynamics of water from computer simulations: a comparison of first-principles molecular dynamics, reactive and empirical force fields.
    Pascal TA; Schärf D; Jung Y; Kühne TD
    J Chem Phys; 2012 Dec; 137(24):244507. PubMed ID: 23277945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.
    Lin ST; Maiti PK; Goddard WA
    J Phys Chem B; 2010 Jun; 114(24):8191-8. PubMed ID: 20504009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration shell structure and dynamics of curium(III) in aqueous solution: first principles and empirical studies.
    Atta-Fynn R; Bylaska EJ; Schenter GK; de Jong WA
    J Phys Chem A; 2011 May; 115(18):4665-77. PubMed ID: 21500828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton.
    Knight C; Maupin CM; Izvekov S; Voth GA
    J Chem Theory Comput; 2010 Oct; 6(10):3223-32. PubMed ID: 26616784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical and quantum gibbs free energies and phase behavior of water using simulation and cell theory.
    Klefas-Stennett M; Henchman RH
    J Phys Chem B; 2008 Aug; 112(32):9769-76. PubMed ID: 18637683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio rigid water: effect on water structure, ion hydration, and thermodynamics.
    Leung K; Rempe SB
    Phys Chem Chem Phys; 2006 May; 8(18):2153-62. PubMed ID: 16751873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching.
    Izvekov S; Parrinello M; Burnham CJ; Voth GA
    J Chem Phys; 2004 Jun; 120(23):10896-913. PubMed ID: 15268120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accurate and simple quantum model for liquid water.
    Paesani F; Zhang W; Case DA; Cheatham TE; Voth GA
    J Chem Phys; 2006 Nov; 125(18):184507. PubMed ID: 17115765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial thermodynamics of water and six other liquid solvents.
    Pascal TA; Goddard WA
    J Phys Chem B; 2014 Jun; 118(22):5943-56. PubMed ID: 24820859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining ab initio quantum mechanics with a dipole-field model to describe acid dissociation reactions in water: first-principles free energy and entropy calculations.
    Maurer P; Iftimie R
    J Chem Phys; 2010 Feb; 132(7):074112. PubMed ID: 20170220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational assessment of the entropy of solvation of small-sized hydrophobic entities.
    Mahajan R; Kranzlmüller D; Volkert J; Hansmann UH; Höfinger S
    Phys Chem Chem Phys; 2006 Dec; 8(47):5515-21. PubMed ID: 17136266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competing quantum effects in the dynamics of a flexible water model.
    Habershon S; Markland TE; Manolopoulos DE
    J Chem Phys; 2009 Jul; 131(2):024501. PubMed ID: 19603998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum effects in liquid water from an ab initio-based polarizable force field.
    Paesani F; Iuchi S; Voth GA
    J Chem Phys; 2007 Aug; 127(7):074506. PubMed ID: 17718619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the temperature dependence of peptide folding entropies and free enthalpies from total energies in molecular dynamics simulations.
    Boned R; van Gunsteren WF; Daura X
    Chemistry; 2008; 14(16):5039-46. PubMed ID: 18399522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.