BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23277949)

  • 1. Internal relaxation in dye sensitized solar cells based on Zn2SnO4 nanostructures.
    Pimachev A; Kolesov G; Chen J; Wang W; Dahnovsky Y
    J Chem Phys; 2012 Dec; 137(24):244704. PubMed ID: 23277949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating Zn2SnO4 quantum dots and aggregates for enhanced performance in dye-sensitized ZnO solar cells.
    Li Y; Wang Y; Chen C; Pang A; Wei M
    Chemistry; 2012 Sep; 18(37):11716-22. PubMed ID: 22887930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells.
    Poudel P; Qiao Q
    Nanoscale; 2012 Apr; 4(9):2826-38. PubMed ID: 22447033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium sensitizer with a thienylvinylbipyridyl ligand for dye-sensitized solar cells.
    Yu Z; Najafabadi HM; Xu Y; Nonomura K; Sun L; Kloo L
    Dalton Trans; 2011 Sep; 40(33):8361-6. PubMed ID: 21769336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal fabrication of hierarchically macroporous Zn2SnO4 for highly efficient dye-sensitized solar cells.
    Wang YF; Li KN; Xu YF; Rao HS; Su CY; Kuang DB
    Nanoscale; 2013 Jul; 5(13):5940-8. PubMed ID: 23703250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of higher open-circuit voltage in Zn-doped TiO2 nanoparticle-based dye-sensitized solar cells.
    Zhu F; Zhang P; Wu X; Fu L; Zhang J; Xu D
    Chemphyschem; 2012 Nov; 13(16):3731-7. PubMed ID: 22899421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical model for charge transport and recombination in dye-sensitized solar cells.
    Anta JA; Casanueva F; Oskam G
    J Phys Chem B; 2006 Mar; 110(11):5372-8. PubMed ID: 16539471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced stability of Zn2SnO4 with N719, N3 and eosin Y dye molecules for DSSC application.
    Pratim Das P; Roy A; Das S; Devi PS
    Phys Chem Chem Phys; 2016 Jan; 18(3):1429-38. PubMed ID: 26498509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods.
    Chen W; Qiu Y; Zhong Y; Wong KS; Yang S
    J Phys Chem A; 2010 Mar; 114(9):3127-38. PubMed ID: 19957989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the light-induced degradation rate of the solar cell sensitizer N719 on TiO2 nanocrystalline particles.
    Nour-Mohhamadi F; Nguyen SD; Boschloo G; Hagfeldt A; Lund T
    J Phys Chem B; 2005 Dec; 109(47):22413-9. PubMed ID: 16853919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative computational study on the interactions of N719 and N749 dyes with iodine in dye-sensitized solar cells.
    Kusama H; Sayama K
    Phys Chem Chem Phys; 2015 Feb; 17(6):4379-87. PubMed ID: 25578335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer dynamics in dye-sensitized solar cells utilizing oligothienylvinylene derivates as organic sensitizers.
    Clifford JN; Forneli A; López-Arroyo L; Caballero R; de la Cruz P; Langa F; Palomares E
    ChemSusChem; 2009; 2(4):344-9. PubMed ID: 19338013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method.
    Bisquert J; Zaban A; Greenshtein M; Mora-Seró I
    J Am Chem Soc; 2004 Oct; 126(41):13550-9. PubMed ID: 15479112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brookite TiO2 nanoparticle films for dye-sensitized solar cells.
    Magne C; Cassaignon S; Lancel G; Pauporté T
    Chemphyschem; 2011 Sep; 12(13):2461-7. PubMed ID: 21751330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoanode based on chain-shaped anatase TiO2 nanorods for high-efficiency dye-sensitized solar cells.
    Rui Y; Li Y; Wang H; Zhang Q
    Chem Asian J; 2012 Oct; 7(10):2313-20. PubMed ID: 22890917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of dye structure on charge recombination in dye-sensitized solar cells.
    Jennings JR; Liu Y; Wang Q; Zakeeruddin SM; Grätzel M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6637-48. PubMed ID: 21380426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New organic dye based on a 3,6-disubstituted carbazole donor for efficient dye-sensitized solar cells.
    Lee W; Cho N; Kwon J; Ko J; Hong JI
    Chem Asian J; 2012 Feb; 7(2):343-50. PubMed ID: 22162253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.
    Shi Y; Dong X
    Chemphyschem; 2013 Jun; 14(9):1985-92. PubMed ID: 23619918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.