These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23278005)

  • 1. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.
    Kia KK; Bonabi F
    Rev Sci Instrum; 2012 Dec; 83(12):123907. PubMed ID: 23278005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple filtered repetitively pulsed vacuum arc plasma source.
    Chekh Y; Zhirkov IS; Delplancke-Ogletree MP
    Rev Sci Instrum; 2010 Feb; 81(2):023506. PubMed ID: 20192494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of carbon onions and nanotubes formed by arc in liquids.
    Alexandrou I; Wang H; Sano N; Amaratunga GA
    J Chem Phys; 2004 Jan; 120(2):1055-8. PubMed ID: 15267942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field emission from a selected multiwall carbon nanotube.
    Passacantando M; Bussolotti F; Santucci S; Di Bartolomeo A; Giubileo F; Iemmo L; Cucolo AM
    Nanotechnology; 2008 Oct; 19(39):395701. PubMed ID: 21832602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.
    Zhang HS; Komvopoulos K
    Rev Sci Instrum; 2008 Jul; 79(7):073905. PubMed ID: 18681714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.
    Irimia D; Dobrikov D; Kortekaas R; Voet H; van den Ende DA; Groen WA; Janssen MH
    Rev Sci Instrum; 2009 Nov; 80(11):113303. PubMed ID: 19947724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal development of ion beam mean charge state in pulsed vacuum arc ion sources.
    Oks EM; Yushkov GY; Anders A
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02B301. PubMed ID: 18315167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.
    Kazemikia K; Bonabi F; Asadpoorchallo A; Shokrzadeh M
    Rev Sci Instrum; 2015 Feb; 86(2):025109. PubMed ID: 25725890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of amorphous carbon nanoparticles and carbon encapsulated metal nanoparticles in liquid benzene by an electric plasma discharge in ultrasonic cavitation field.
    Sergiienko R; Shibata E; Suwa H; Nakamura T; Akase Z; Murakami Y; Shindo D
    Ultrason Sonochem; 2006 Jan; 13(1):6-12. PubMed ID: 16223679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water.
    Imasaka K; Suehiro J; Kanatake Y; Kato Y; Hara M
    Nanotechnology; 2006 Jul; 17(14):3421-7. PubMed ID: 19661585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gridless, very low energy, high-current, gaseous ion source.
    Vizir AV; Shandrikov MV; Yushkov GY; Oks EM
    Rev Sci Instrum; 2010 Feb; 81(2):02B307. PubMed ID: 20192430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric field induced growth of well aligned carbon nanotubes from ethanol flames.
    Bao Q; Pan C
    Nanotechnology; 2006 Feb; 17(4):1016-21. PubMed ID: 21727374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single wall carbon nanotube supports for portable direct methanol fuel cells.
    Girishkumar G; Hall TD; Vinodgopal K; Kamat PV
    J Phys Chem B; 2006 Jan; 110(1):107-14. PubMed ID: 16471506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanosynthesis by atmospheric arc discharges excited with pulsed-DC power: a review.
    Corbella C; Portal S; Kundrapu MN; Keidar M
    Nanotechnology; 2022 May; 33(34):. PubMed ID: 35487195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverted end-Hall-type low-energy high-current gaseous ion source.
    Oks EM; Vizir AV; Shandrikov MV; Yushkov GY; Grishin DM; Anders A; Baldwin DA
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02B302. PubMed ID: 18315168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach for explanation of specimen rupture under high electric field.
    Mikhailovskij IM; Wanderka N; Storizhko VE; Ksenofontov VA; Mazilova TI
    Ultramicroscopy; 2009 Apr; 109(5):480-5. PubMed ID: 19171432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.
    Pootawang P; Saito N; Takai O; Lee SY
    Nanotechnology; 2012 Oct; 23(39):395602. PubMed ID: 22968093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Hollow Carbon Nano-Onions Using the Pulsed Plasma in Liquid.
    Omurzak E; Abdullaeva Z; Iwamoto C; Ihara H; Sulaimankulova S; Mashimo T
    J Nanosci Nanotechnol; 2015 May; 15(5):3703-9. PubMed ID: 26504995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.