These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 23278009)

  • 1. Electric field measurement in microwave discharge ion thruster with electro-optic probe.
    Ise T; Tsukizaki R; Togo H; Koizumi H; Kuninaka H
    Rev Sci Instrum; 2012 Dec; 83(12):124702. PubMed ID: 23278009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes.
    Tsukizaki R; Koizumi H; Nishiyama K; Kuninaka H
    Rev Sci Instrum; 2011 Dec; 82(12):123103. PubMed ID: 22225195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.
    Herman DA; Gallimore AD
    Rev Sci Instrum; 2008 Jan; 79(1):013302. PubMed ID: 18248026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion.
    Dey I; Toyoda Y; Yamamoto N; Nakashima H
    Rev Sci Instrum; 2015 Dec; 86(12):123505. PubMed ID: 26724025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and research of a coaxial microwave plasma thruster.
    Yang J; Xu Y; Tang J; Mao G; Yang T; Tan X
    Rev Sci Instrum; 2008 Aug; 79(8):083503. PubMed ID: 19044345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.
    West MD; Charles C; Boswell RW
    Rev Sci Instrum; 2009 May; 80(5):053509. PubMed ID: 19485509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.
    Bundesmann C; Tartz M; Scholze F; Leiter HJ; Scortecci F; Gnizdor RY; Neumann H
    Rev Sci Instrum; 2010 Apr; 81(4):046106. PubMed ID: 20441379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faraday cup sizing for electric propulsion ion beam study: Case of a field-emission-electric propulsion thruster.
    Hugonnaud V; Mazouffre S; Krejci D
    Rev Sci Instrum; 2021 Aug; 92(8):084502. PubMed ID: 34470437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kr II laser-induced fluorescence for measuring plasma acceleration.
    Hargus WA; Azarnia GM; Nakles MR
    Rev Sci Instrum; 2012 Oct; 83(10):103111. PubMed ID: 23126755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.
    Dannenmayer K; Mazouffre S
    Rev Sci Instrum; 2012 Dec; 83(12):123503. PubMed ID: 23277983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography.
    Elias PQ; Jarrige J; Cucchetti E; Cannat F; Packan D
    Rev Sci Instrum; 2017 Sep; 88(9):093511. PubMed ID: 28964238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high power ion thruster for deep space missions.
    Polk JE; Goebel DM; Snyder JS; Schneider AC; Johnson LK; Sengupta A
    Rev Sci Instrum; 2012 Jul; 83(7):073306. PubMed ID: 22852684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct-current current transformer for the measurement of an electric propulsion ion beam.
    Volkmar C; Geile C; Neumann A; Hannemann K
    Rev Sci Instrum; 2019 Mar; 90(3):033303. PubMed ID: 30927767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ endoscopic observation of higher-order mode conversion in a microwave mode converter based on an electro-optic probe system.
    Lee I; Lee DJ; Choi E
    Opt Express; 2014 Nov; 22(22):27542-52. PubMed ID: 25401901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 100 KW Class Applied-field Magnetoplasmadynamic Thruster.
    Wang B; Tang H; Wang Y; Lu C; Zhou C; Dong Y; Wang G; Cong Y; Luu D; Cao J
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30614493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique.
    Yamamoto N; Tomita K; Sugita K; Kurita T; Nakashima H; Uchino K
    Rev Sci Instrum; 2012 Jul; 83(7):073106. PubMed ID: 22852670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The curling probe: A numerical and experimental study. Application to the electron density measurements in an ECR plasma thruster.
    Boni F; Jarrige J; Désangles V; Minea T
    Rev Sci Instrum; 2021 Mar; 92(3):033507. PubMed ID: 33820023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed dual Langmuir probe.
    Lobbia RB; Gallimore AD
    Rev Sci Instrum; 2010 Jul; 81(7):073503. PubMed ID: 20687718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.