These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 23278015)
1. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique. Sayer RA; Piekos ES; Phinney LM Rev Sci Instrum; 2012 Dec; 83(12):124904. PubMed ID: 23278015 [TBL] [Abstract][Full Text] [Related]
2. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity. Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848 [TBL] [Abstract][Full Text] [Related]
3. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Yue Y; Zhang J; Wang X Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970 [TBL] [Abstract][Full Text] [Related]
4. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms. Fillaudeau L; Winterton P; Leuliet JC; Tissier JP; Maury V; Semet F; Debreyne P; Berthou M; Chopard F J Dairy Sci; 2006 Dec; 89(12):4475-89. PubMed ID: 17106078 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous measurements of the specific heat and thermal conductivity of suspended thin samples by transient electrothermal method. Feng B; Ma W; Li Z; Zhang X Rev Sci Instrum; 2009 Jun; 80(6):064901. PubMed ID: 19566218 [TBL] [Abstract][Full Text] [Related]
6. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film. Chien HC; Yao DJ; Huang MJ; Chang TY Rev Sci Instrum; 2008 May; 79(5):054902. PubMed ID: 18513085 [TBL] [Abstract][Full Text] [Related]
7. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. Ahmed M; Liu Z; Humphries S; Goldberg SN Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580 [TBL] [Abstract][Full Text] [Related]
8. Joule heating in packed capillaries used in capillary electrochromatography. Rathore AS; Reynolds KJ; Colón LA Electrophoresis; 2002 Sep; 23(17):2918-28. PubMed ID: 12207300 [TBL] [Abstract][Full Text] [Related]
9. Reliable electrophoretic mobilities free from Joule heating effects using CE. Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134 [TBL] [Abstract][Full Text] [Related]
10. A direct differential method for measuring thermal conductivity of thin films. Zeng Y; Marconnet A Rev Sci Instrum; 2017 Apr; 88(4):044901. PubMed ID: 28456238 [TBL] [Abstract][Full Text] [Related]
11. High temperature thermal conductivity of platinum microwire by 3ω method. Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493 [TBL] [Abstract][Full Text] [Related]
12. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors. Wan X; Li C; Yue Y; Xie D; Xue M; Hu N Nanotechnology; 2016 Nov; 27(44):445706. PubMed ID: 27671086 [TBL] [Abstract][Full Text] [Related]
13. Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI. Yesinowski JP; Ladouceur HD; Purdy AP; Miller JB J Chem Phys; 2010 Dec; 133(23):234509. PubMed ID: 21186877 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating. Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353 [TBL] [Abstract][Full Text] [Related]
15. Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method. Sikora A; Ftouni H; Richard J; Hébert C; Eon D; Omnès F; Bourgeois O Rev Sci Instrum; 2012 May; 83(5):054902. PubMed ID: 22667639 [TBL] [Abstract][Full Text] [Related]
16. Thermal Conductivity of Magnesium Oxide From Absolute, Steady-State Measurements. Slifka AJ; Filla BJ; Phelps JM J Res Natl Inst Stand Technol; 1998; 103(4):357-363. PubMed ID: 28009383 [TBL] [Abstract][Full Text] [Related]
17. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material. Davidson SR; Sherar MD Int J Hyperthermia; 2003; 19(5):551-62. PubMed ID: 12944169 [TBL] [Abstract][Full Text] [Related]
18. A noncontact thermal microprobe for local thermal conductivity measurement. Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625 [TBL] [Abstract][Full Text] [Related]
19. Thermoelectric characterization by transient Harman method under nonideal contact and boundary conditions. Castillo EE; Hapenciuc CL; Borca-Tasciuc T Rev Sci Instrum; 2010 Apr; 81(4):044902. PubMed ID: 20441361 [TBL] [Abstract][Full Text] [Related]
20. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels. Tang G; Yang C Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]