These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23278031)

  • 1. Note: helical nanobelt force sensors.
    Hwang G; Hashimoto H
    Rev Sci Instrum; 2012 Dec; 83(12):126102. PubMed ID: 23278031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoresistive InGaAs/GaAs nanosprings with metal connectors.
    Hwang G; Hashimoto H
    Nano Lett; 2009 Feb; 9(2):554-61. PubMed ID: 19173628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope.
    Acosta JC; Hwang G; Polesel-Maris J; Régnier S
    Rev Sci Instrum; 2011 Mar; 82(3):035116. PubMed ID: 21456797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Piezoresistance in B-Doped SiC Nanobelts with a Gauge Factor of -1800.
    Li X; Gao F; Wang L; Chen S; Deng B; Chen L; Lin CH; Yang W; Wu T
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47848-47853. PubMed ID: 32990424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 10 nN resolution thrust-stand for micro-propulsion devices.
    Chakraborty S; Courtney DG; Shea H
    Rev Sci Instrum; 2015 Nov; 86(11):115109. PubMed ID: 26628174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy.
    Liu Y; Miao H; Aksyuk V; Srinivasan K
    Opt Express; 2012 Jul; 20(16):18268-80. PubMed ID: 23038376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments.
    Oiko VT; Martins BV; Silva PC; Rodrigues V; Ugarte D
    Rev Sci Instrum; 2014 Mar; 85(3):035003. PubMed ID: 24689612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High ethanol sensitivity of palladium/TiO2 nanobelt surface heterostructures dominated by enlarged surface area and nano-Schottky junctions.
    Wang D; Zhou W; Hu P; Guan Y; Chen L; Li J; Wang G; Liu H; Wang J; Cao G; Jiang H
    J Colloid Interface Sci; 2012 Dec; 388(1):144-50. PubMed ID: 23010318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever.
    Kim HJ; Moldovan N; Felts JR; Somnath S; Dai Z; Jacobs TD; Carpick RW; Carlisle JA; King WP
    Nanotechnology; 2012 Dec; 23(49):495302. PubMed ID: 23149947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering.
    Hu P; Du G; Zhou W; Cui J; Lin J; Liu H; Liu D; Wang J; Chen S
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3263-9. PubMed ID: 20964415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The elastic moduli of oriented tin oxide nanowires.
    Barth S; Harnagea C; Mathur S; Rosei F
    Nanotechnology; 2009 Mar; 20(11):115705. PubMed ID: 19420453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor.
    Xie H; Vitard J; Haliyo S; Régnier S; Boukallel M
    Rev Sci Instrum; 2008 Mar; 79(3):033708. PubMed ID: 18377016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Nanotechnology; 2010 Apr; 21(14):145702. PubMed ID: 20220220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centimeter-long Ta3N5 nanobelts: synthesis, electrical transport, and photoconductive properties.
    Wu XC; Tao YR; Li L; Bando Y; Golberg D
    Nanotechnology; 2013 May; 24(17):175701. PubMed ID: 23548821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a single metal nanowire connected with dissimilar metal electrodes and its application to chemical sensing.
    Lin HY; Chen HA; Lin HN
    Anal Chem; 2008 Mar; 80(6):1937-41. PubMed ID: 18293944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of MEMS piezoresistive pressure sensors using AFM.
    Patil SK; Celik-Butler Z; Butler DP
    Ultramicroscopy; 2010 Aug; 110(9):1154-60. PubMed ID: 20452125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled aggregates of amphiphilic perylene diimide-based semiconductor molecules: effect of morphology on conductivity.
    Chen Y; Feng Y; Gao J; Bouvet M
    J Colloid Interface Sci; 2012 Feb; 368(1):387-94. PubMed ID: 22129629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra-Soft Tactile Sensor for Sensitive Force/Displacement Measurement with High Linearity Based on a Uniform Strength Beam.
    Ni N; Xue X; Li D
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy.
    Sahin O; Erina N
    Nanotechnology; 2008 Nov; 19(44):445717. PubMed ID: 21832758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of a nano-Newton resolution thrust stand.
    Soni J; Roy S
    Rev Sci Instrum; 2013 Sep; 84(9):095103. PubMed ID: 24089862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.