These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23278046)

  • 1. A "saddle-node" bifurcation scenario for birth or destruction of a Smale-Williams solenoid.
    Isaeva OB; Kuznetsov SP; Sataev IR
    Chaos; 2012 Dec; 22(4):043111. PubMed ID: 23278046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Example of a physical system with a hyperbolic attractor of the Smale-Williams type.
    Kuznetsov SP
    Phys Rev Lett; 2005 Sep; 95(14):144101. PubMed ID: 16241659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smale-Williams solenoids in autonomous system with saddle equilibrium.
    Kuznetsov SP; Kruglov VP; Sataev IR
    Chaos; 2021 Jan; 31(1):013140. PubMed ID: 33754754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple attractors and boundary crises in a tri-trophic food chain.
    Boer MP; Kooi BW; Kooijman SA
    Math Biosci; 2001 Feb; 169(2):109-28. PubMed ID: 11166318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold.
    Dronov V; Ott E
    Chaos; 2000 Jun; 10(2):291-298. PubMed ID: 12779384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of noise in a nonautonomous system of alternately excited oscillators with a hyperbolic strange attractor.
    Jalnine AY; Kuznetsov SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036220. PubMed ID: 18517498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient chaotic rotating waves in a ring of unidirectionally coupled symmetric Bonhoeffer-van der Pol oscillators near a codimension-two bifurcation point.
    Horikawa Y; Kitajima H
    Chaos; 2012 Sep; 22(3):033115. PubMed ID: 23020454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results.
    Belykh VN; Barabash NV; Belykh IV
    Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcritical riddling in a system of coupled maps.
    Popovych O; Maistrenko Y; Mosekilde E; Pikovsky A; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036201. PubMed ID: 11308735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy and bifurcations in a chaotic laser.
    Collins P; Krauskopf B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056201. PubMed ID: 12513580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation.
    Ermentrout GB; Glass L; Oldeman BE
    Neural Comput; 2012 Dec; 24(12):3111-25. PubMed ID: 22970869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method.
    Liu X; Hong L; Jiang J
    Chaos; 2016 Aug; 26(8):084304. PubMed ID: 27586621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arnold's cat map dynamics in a system of coupled nonautonomous van der Pol oscillators.
    Isaeva OB; Jalnine AY; Kuznetsov SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046207. PubMed ID: 17155153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism for the riddling transition in coupled chaotic systems.
    Kim SY; Lim W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026217. PubMed ID: 11308568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On hyperbolic attractors in a modified complex Shimizu-Morioka system.
    Kruglov V; Sataev I
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37307157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperbolic chaos of Turing patterns.
    Kuptsov PV; Kuznetsov SP; Pikovsky A
    Phys Rev Lett; 2012 May; 108(19):194101. PubMed ID: 23003043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling properties of saddle-node bifurcations on fractal basin boundaries.
    Breban R; Nusse HE; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066213. PubMed ID: 14754303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment.
    Pinto RD; Sartorelli JC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):342-7. PubMed ID: 11046271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.