These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 23278050)
1. Faster than expected escape for a class of fully chaotic maps. Georgiou O; Dettmann CP; Altmann EG Chaos; 2012 Dec; 22(4):043115. PubMed ID: 23278050 [TBL] [Abstract][Full Text] [Related]
2. Dependence of chaotic diffusion on the size and position of holes. Knight G; Georgiou O; Dettmann CP; Klages R Chaos; 2012 Jun; 22(2):023132. PubMed ID: 22757539 [TBL] [Abstract][Full Text] [Related]
3. Many-hole interactions and the average lifetimes of chaotic transients that precede controlled periodic motion. Buljan H; Paar V Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066205. PubMed ID: 11415204 [TBL] [Abstract][Full Text] [Related]
4. variant Planck's over 2pi expansion for the periodic orbit quantization of chaotic systems. Alonso D; Gaspard P Chaos; 1993 Oct; 3(4):601-612. PubMed ID: 12780065 [TBL] [Abstract][Full Text] [Related]
5. Asymptotic analysis of narrow escape problems in nonspherical three-dimensional domains. Gomez D; Cheviakov AF Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012137. PubMed ID: 25679600 [TBL] [Abstract][Full Text] [Related]
6. Stochastic perturbations in open chaotic systems: random versus noisy maps. Bódai T; Altmann EG; Endler A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042902. PubMed ID: 23679484 [TBL] [Abstract][Full Text] [Related]
7. Poincaré recurrences and transient chaos in systems with leaks. Altmann EG; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016204. PubMed ID: 19257119 [TBL] [Abstract][Full Text] [Related]
8. Multiple returns for some regular and mixing maps. Haydn N; Lunedei E; Rossi L; Turchetti G; Vaienti S Chaos; 2005 Sep; 15(3):33109. PubMed ID: 16252983 [TBL] [Abstract][Full Text] [Related]
9. Brownian escape and force-driven transport through entropic barriers: Particle size effect. Cheng KL; Sheng YJ; Tsao HK J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425 [TBL] [Abstract][Full Text] [Related]
10. Random maps and attractors in random Boolean networks. Samuelsson B; Troein C Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046112. PubMed ID: 16383473 [TBL] [Abstract][Full Text] [Related]
11. Quantifying intermittency in the open drivebelt billiard. Dettmann CP; Georgiou O Chaos; 2012 Jun; 22(2):026113. PubMed ID: 22757572 [TBL] [Abstract][Full Text] [Related]
12. Coherent periodic activity in excitatory Erdös-Renyi neural networks: the role of network connectivity. Tattini L; Olmi S; Torcini A Chaos; 2012 Jun; 22(2):023133. PubMed ID: 22757540 [TBL] [Abstract][Full Text] [Related]
13. Escape from attracting sets in randomly perturbed systems. Rodrigues CS; Grebogi C; de Moura AP Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046217. PubMed ID: 21230375 [TBL] [Abstract][Full Text] [Related]
14. Generalized entropies of chaotic maps and flows: A unified approach. Badii R Chaos; 1997 Dec; 7(4):694-700. PubMed ID: 12779695 [TBL] [Abstract][Full Text] [Related]
15. Exact, convergent periodic-orbit expansions of individual energy eigenvalues of regular quantum graphs. Blümel R; Dabaghian Y; Jensen RV Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046222. PubMed ID: 12005991 [TBL] [Abstract][Full Text] [Related]
17. Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks. Mendonca HM; Tönjes R; Pereira T Entropy (Basel); 2023 Jun; 25(7):. PubMed ID: 37509930 [TBL] [Abstract][Full Text] [Related]
18. Periodic-orbit analysis and scaling laws of intermingled basins of attraction in an ecological dynamical system. Pereira RF; Camargo S; de S Pinto SE; Lopes SR; Viana RL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056214. PubMed ID: 19113207 [TBL] [Abstract][Full Text] [Related]
19. Escape dynamics of many hard disks. Taniguchi T; Murata H; Sawada SI Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052923. PubMed ID: 25493874 [TBL] [Abstract][Full Text] [Related]
20. Numerical experiments of the planar equal-mass three-body problem: the effects of rotation. Kuwabara KH; Tanikawa K Chaos; 2007 Sep; 17(3):033105. PubMed ID: 17902987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]