These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 23278062)
1. Time-delay effect on the bursting of the synchronized state of coupled Hindmarsh-Rose neurons. Zheng YG; Wang ZH Chaos; 2012 Dec; 22(4):043127. PubMed ID: 23278062 [TBL] [Abstract][Full Text] [Related]
2. On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron. Innocenti G; Genesio R Chaos; 2009 Jun; 19(2):023124. PubMed ID: 19566259 [TBL] [Abstract][Full Text] [Related]
3. Time-delay-induced phase-transition to synchrony in coupled bursting neurons. Adhikari BM; Prasad A; Dhamala M Chaos; 2011 Jun; 21(2):023116. PubMed ID: 21721758 [TBL] [Abstract][Full Text] [Related]
4. Hysteresis dynamics, bursting oscillations and evolution to chaotic regimes. Françoise JP; Piquet C Acta Biotheor; 2005; 53(4):381-92. PubMed ID: 16583277 [TBL] [Abstract][Full Text] [Related]
5. Chaotic bursting as chaotic itinerancy in coupled neural oscillators. Han SK; Postnov DE Chaos; 2003 Sep; 13(3):1105-9. PubMed ID: 12946203 [TBL] [Abstract][Full Text] [Related]
6. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. Innocenti G; Morelli A; Genesio R; Torcini A Chaos; 2007 Dec; 17(4):043128. PubMed ID: 18163792 [TBL] [Abstract][Full Text] [Related]
7. Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Barrio R; Martínez MA; Serrano S; Shilnikov A Chaos; 2014 Jun; 24(2):023128. PubMed ID: 24985442 [TBL] [Abstract][Full Text] [Related]
8. Stability, bifurcations, and dynamics of global variables of a system of bursting neurons. Franović I; Todorović K; Vasović N; Burić N Chaos; 2011 Sep; 21(3):033109. PubMed ID: 21974644 [TBL] [Abstract][Full Text] [Related]
9. Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. González-Miranda JM Chaos; 2003 Sep; 13(3):845-52. PubMed ID: 12946176 [TBL] [Abstract][Full Text] [Related]
10. Predicting single spikes and spike patterns with the Hindmarsh-Rose model. de Lange E; Hasler M Biol Cybern; 2008 Nov; 99(4-5):349-60. PubMed ID: 19011923 [TBL] [Abstract][Full Text] [Related]
11. Chaotic phase synchronization in small-world networks of bursting neurons. Yu H; Wang J; Deng B; Wei X; Wong YK; Chan WL; Tsang KM; Yu Z Chaos; 2011 Mar; 21(1):013127. PubMed ID: 21456841 [TBL] [Abstract][Full Text] [Related]
12. Synchronizing Hindmarsh-Rose neurons over Newman-Watts networks. Jalili M Chaos; 2009 Sep; 19(3):033103. PubMed ID: 19791983 [TBL] [Abstract][Full Text] [Related]
18. Stability switches and multistability coexistence in a delay-coupled neural oscillators system. Song Z; Xu J J Theor Biol; 2012 Nov; 313():98-114. PubMed ID: 22921877 [TBL] [Abstract][Full Text] [Related]
19. Time-delayed feedback in neurosystems. Schöll E; Hiller G; Hövel P; Dahlem MA Philos Trans A Math Phys Eng Sci; 2009 Mar; 367(1891):1079-96. PubMed ID: 19218152 [TBL] [Abstract][Full Text] [Related]
20. Mathematical model of pacemaker activity in bursting neurons of snail, Helix pomatia. Berezetskaya NM; Kharkyanen VN; Kononenko NI J Theor Biol; 1996 Nov; 183(2):207-18. PubMed ID: 8977878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]