These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23278696)
41. Excretion into gastrointestinal tract of irinotecan lactone and carboxylate forms and their pharmacodynamics in rodents. Arimori K; Kuroki N; Kumamoto A; Tanoue N; Nakano M; Kumazawa E; Tohgo A; Kikuchi M Pharm Res; 2001 Jun; 18(6):814-22. PubMed ID: 11474786 [TBL] [Abstract][Full Text] [Related]
42. [Effect of Shengjiang Xiexin Decoction on the Repair of Damaged Rat Intestinal Mucosa after Irinotecan Chemotherapy]. Wang J; Jia LQ; Tan HY; Pan L; Yu LL; Deng B Zhongguo Zhong Xi Yi Jie He Za Zhi; 2015 Oct; 35(10):1236-43. PubMed ID: 26677677 [TBL] [Abstract][Full Text] [Related]
43. [Preparation and characterization of irinotecan hydrochloride loaded PEO-PPO-PEO micelles and its mechanism of decreasing drug intestinal toxicity]. Zhang XX; Guo SY; Li FF; Gan Y Yao Xue Xue Bao; 2012 Nov; 47(11):1534-40. PubMed ID: 23387089 [TBL] [Abstract][Full Text] [Related]
44. Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. Chu XY; Kato Y; Niinuma K; Sudo KI; Hakusui H; Sugiyama Y J Pharmacol Exp Ther; 1997 Apr; 281(1):304-14. PubMed ID: 9103511 [TBL] [Abstract][Full Text] [Related]
45. Metabolism of irinotecan and its active metabolite SN-38 by intestinal microflora in rats. Yamamoto M; Kurita A; Asahara T; Takakura A; Katono K; Iwasaki M; Ryuge S; Wada M; Onoda S; Yanaihara T; Yokoba M; Mitsufuji H; Nishii Y; Fukui T; Masuda N Oncol Rep; 2008 Oct; 20(4):727-30. PubMed ID: 18813810 [TBL] [Abstract][Full Text] [Related]
46. The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Horikawa M; Kato Y; Tyson CA; Sugiyama Y Drug Metab Pharmacokinet; 2002; 17(1):23-33. PubMed ID: 15618649 [TBL] [Abstract][Full Text] [Related]
47. Novel agents that potentially inhibit irinotecan-induced diarrhea. Yang X; Hu Z; Chan SY; Chan E; Goh BC; Duan W; Zhou S Curr Med Chem; 2005; 12(11):1343-58. PubMed ID: 15975002 [TBL] [Abstract][Full Text] [Related]
48. Severe CPT-11-induced diarrhea in presence of FK-506 following liver transplantation for hepatocellular carcinoma. Gornet JM; Lokiec F; Duclos-Vallee JC; Azoulay D; Goldwasser F Anticancer Res; 2001; 21(6A):4203-6. PubMed ID: 11911319 [TBL] [Abstract][Full Text] [Related]
49. Interleukin 15 offers selective protection from irinotecan-induced intestinal toxicity in a preclinical animal model. Cao S; Black JD; Troutt AB; Rustum YM Cancer Res; 1998 Aug; 58(15):3270-4. PubMed ID: 9699654 [TBL] [Abstract][Full Text] [Related]
50. Effect of probenecid on the biliary excretion of belotecan. Namkoong EM; Kim IW; Kim DD; Chung SJ; Shim CK Arch Pharm Res; 2007 Nov; 30(11):1482-8. PubMed ID: 18087819 [TBL] [Abstract][Full Text] [Related]
51. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Chu XY; Kato Y; Sugiyama Y Cancer Res; 1997 May; 57(10):1934-8. PubMed ID: 9157988 [TBL] [Abstract][Full Text] [Related]
52. Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice. Iyer L; Ramírez J; Shepard DR; Bingham CM; Hossfeld DK; Ratain MJ; Mayer U Cancer Chemother Pharmacol; 2002 Apr; 49(4):336-41. PubMed ID: 11914914 [TBL] [Abstract][Full Text] [Related]
53. Intestinal uptake and biliary excretion of the isoflavone genistein in rats. Sfakianos J; Coward L; Kirk M; Barnes S J Nutr; 1997 Jul; 127(7):1260-8. PubMed ID: 9202077 [TBL] [Abstract][Full Text] [Related]
54. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. Lin XB; Farhangfar A; Valcheva R; Sawyer MB; Dieleman L; Schieber A; Gänzle MG; Baracos V PLoS One; 2014; 9(1):e83644. PubMed ID: 24454707 [TBL] [Abstract][Full Text] [Related]
55. [Effect of tacrolimus on the pharmacokinetics and glucuronidation of SN-38, an active metabolite of irinotecan]. Tanaka Y; Katoh M; Fujioka M; Onishi K; Sakakibara Y; Hasegawa T; Nadai M Yakugaku Zasshi; 2013; 133(4):463-71. PubMed ID: 23328499 [TBL] [Abstract][Full Text] [Related]
56. Shengjiang Xiexin Decoction Alters Pharmacokinetics of Irinotecan by Regulating Metabolic Enzymes and Transporters: A Multi-Target Therapy for Alleviating the Gastrointestinal Toxicity. Guan HY; Li PF; Wang XM; Yue JJ; He Y; Luo XM; Su MF; Liao SG; Shi Y Front Pharmacol; 2017; 8():769. PubMed ID: 29163158 [TBL] [Abstract][Full Text] [Related]
57. [Role of ABC efflux transporters in the oral bioavailability and drug-induced intestinal toxicity]. Yokooji T Yakugaku Zasshi; 2013; 133(7):815-22. PubMed ID: 23811769 [TBL] [Abstract][Full Text] [Related]
58. Site-specific bidirectional efflux of 2,4-dinitrophenyl-S-glutathione, a substrate of multidrug resistance-associated proteins, in rat intestine and Caco-2 cells. Yokooji T; Murakami T; Yumoto R; Nagai J; Takano M J Pharm Pharmacol; 2007 Apr; 59(4):513-20. PubMed ID: 17430634 [TBL] [Abstract][Full Text] [Related]
59. Irinotecan-mediated diarrhea is mainly correlated with intestinal exposure to SN-38: Critical role of gut Ugt. Sun R; Zhu L; Li L; Song W; Gong X; Qi X; Wang Y; Ghose R; Gao S; Hu M; Liu Z Toxicol Appl Pharmacol; 2020 Jul; 398():115032. PubMed ID: 32387182 [TBL] [Abstract][Full Text] [Related]
60. Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Araki E; Ishikawa M; Iigo M; Koide T; Itabashi M; Hoshi A Jpn J Cancer Res; 1993 Jun; 84(6):697-702. PubMed ID: 8340259 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]