These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23279435)

  • 41. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1.
    Pantke C; Obst M; Benzerara K; Morin G; Ona-Nguema G; Dippon U; Kappler A
    Environ Sci Technol; 2012 Feb; 46(3):1439-46. PubMed ID: 22201257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances in the detection of as in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria.
    Hitchcock AP; Obst M; Wang J; Lu YS; Tyliszczak T
    Environ Sci Technol; 2012 Mar; 46(5):2821-9. PubMed ID: 22283463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface characterisation reveals substrate suitability for cyanobacterial phototaxis.
    Julius LAN; Matter L; Schuergers N; Lützenkirchen J; Trouillet V; Gil-Díaz T; Mamleyev ER; Wilde A; Badilita V; Korvink JG
    Acta Biomater; 2023 Jan; 155():386-399. PubMed ID: 36280031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enrichment and isolation of iron-oxidizing bacteria at neutral pH.
    Emerson D; Floyd MM
    Methods Enzymol; 2005; 397():112-23. PubMed ID: 16260287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces.
    Xu Y; Takai M; Ishihara K
    Biomaterials; 2009 Oct; 30(28):4930-8. PubMed ID: 19560198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ atomic force microscopy of modified dextrin adsorption on hydrophobic and hydrophilic layered silicate minerals.
    Mierczynska-Vasilev A; Beattie DA
    J Colloid Interface Sci; 2010 Apr; 344(2):429-37. PubMed ID: 20138294
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Model system studies of the influence of bacterial biofilm formation on mineral surface reactivity.
    Brydie JR; Wogelius RA; Boult S; Merrifield CM; Vaughan DJ
    Biofouling; 2009; 25(5):463-72. PubMed ID: 19353390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms.
    Hoover RL; Keffer JL; Polson SW; Chan CS
    mSystems; 2023 Dec; 8(6):e0003823. PubMed ID: 37882557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2008 May; 24(9):4944-51. PubMed ID: 18355095
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iron-oxidizing bacteria: an environmental and genomic perspective.
    Emerson D; Fleming EJ; McBeth JM
    Annu Rev Microbiol; 2010; 64():561-83. PubMed ID: 20565252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aerobic iron-oxidizing bacteria secrete metabolites that markedly impede abiotic iron oxidation.
    Baker IR; Matzen SL; Schuler CJ; Toner BM; Girguis PR
    PNAS Nexus; 2023 Dec; 2(12):pgad421. PubMed ID: 38111821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mobile colloid generation induced by a cementitious plume: mineral surface-charge controls on mobilization.
    Li D; Kaplan DI; Roberts KA; Seaman JC
    Environ Sci Technol; 2012 Mar; 46(5):2755-63. PubMed ID: 22316126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drastically lowered protein adsorption on microbicidal hydrophobic/hydrophilic polyelectrolyte multilayers.
    Wong SY; Han L; Timachova K; Veselinovic J; Hyder MN; Ortiz C; Klibanov AM; Hammond PT
    Biomacromolecules; 2012 Mar; 13(3):719-26. PubMed ID: 22300304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional diversity of bacteria in a ferruginous hydrothermal sediment.
    Handley KM; Boothman C; Mills RA; Pancost RD; Lloyd JR
    ISME J; 2010 Sep; 4(9):1193-205. PubMed ID: 20410934
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrostatic behavior of the charge-regulated bacterial cell surface.
    Hong Y; Brown DG
    Langmuir; 2008 May; 24(9):5003-9. PubMed ID: 18363414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fundamental studies of electrochemically controlled surface oxidation and hydrophobicity of natural enargite.
    Plackowski C; Hampton MA; Nguyen AV; Bruckard WJ
    Langmuir; 2013 Feb; 29(7):2371-86. PubMed ID: 23331095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Iron cycling at corroding carbon steel surfaces.
    Lee JS; McBeth JM; Ray RI; Little BJ; Emerson D
    Biofouling; 2013; 29(10):1243-52. PubMed ID: 24093730
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring the biochemistry at the extracellular redox frontier of bacterial mineral Fe(III) respiration.
    Richardson DJ; Edwards MJ; White GF; Baiden N; Hartshorne RS; Fredrickson J; Shi L; Zachara J; Gates AJ; Butt JN; Clarke TA
    Biochem Soc Trans; 2012 Jun; 40(3):493-500. PubMed ID: 22616858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights into bacterial contact angles: difficulties in defining hydrophobicity and surface Gibbs energy.
    Gallardo-Moreno AM; Navarro-Pérez ML; Vadillo-Rodríguez V; Bruque JM; González-Martín ML
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):373-80. PubMed ID: 21807482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.