BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23279585)

  • 1. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.
    Brat D; Boles E
    FEMS Yeast Res; 2013 Mar; 13(2):241-4. PubMed ID: 23279585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes.
    Songdech P; Butkinaree C; Yingchutrakul Y; Promdonkoy P; Runguphan W; Soontorngun N
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38331422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Expression of xylose isomerase gene(xylA) in Saccharomyces cerevisiae from Clostridium thermohydrosulfuricum].
    Bao X; Gao D; Wang Z
    Wei Sheng Wu Xue Bao; 1999 Feb; 39(1):49-54. PubMed ID: 12555401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.
    Bamba T; Yukawa T; Guirimand G; Inokuma K; Sasaki K; Hasunuma T; Kondo A
    Metab Eng; 2019 Dec; 56():17-27. PubMed ID: 31434008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
    Scalcinati G; Otero JM; Van Vleet JR; Jeffries TW; Olsson L; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):582-97. PubMed ID: 22487265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains.
    Bracher JM; Martinez-Rodriguez OA; Dekker WJC; Verhoeven MD; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30252062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae.
    Lane S; Zhang Y; Yun EJ; Ziolkowski L; Zhang G; Jin YS; Avalos JL
    Biotechnol Bioeng; 2020 Feb; 117(2):372-381. PubMed ID: 31631318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose.
    Ni H; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2007 Apr; 73(7):2061-6. PubMed ID: 17277207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2487-98. PubMed ID: 26671616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.
    Shen Y; Chen X; Peng B; Chen L; Hou J; Bao X
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):1079-91. PubMed ID: 23053078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain.
    Li YC; Gou ZX; Liu ZS; Tang YQ; Akamatsu T; Kida K
    Biotechnol Lett; 2014 Oct; 36(10):2011-21. PubMed ID: 24966040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering considerations for the heterologous expression of xylose-catabolic pathways in Saccharomyces cerevisiae.
    Jeong D; Oh EJ; Ko JK; Nam JO; Park HS; Jin YS; Lee EJ; Kim SR
    PLoS One; 2020; 15(7):e0236294. PubMed ID: 32716960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering.
    Bengtsson O; Jeppsson M; Sonderegger M; Parachin NS; Sauer U; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2008 Nov; 25(11):835-47. PubMed ID: 19061191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.