BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23279643)

  • 1. The VKORC1 and CYP2C9 genotypes are associated with over-anticoagulation during initiation of warfarin therapy in children.
    Biss TT; Avery PJ; Williams MD; Brandão LR; Grainger JD; Kamali F
    J Thromb Haemost; 2013 Feb; 11(2):373-5. PubMed ID: 23279643
    [No Abstract]   [Full Text] [Related]  

  • 2. Responsiveness to low-dose warfarin associated with genetic variants of VKORC1, CYP2C9, CYP2C19, and CYP4F2 in an Indonesian population.
    Rusdiana T; Araki T; Nakamura T; Subarnas A; Yamamoto K
    Eur J Clin Pharmacol; 2013 Mar; 69(3):395-405. PubMed ID: 22855348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VKORC1 and CYP2C9 genotypes are predictors of warfarin-related outcomes in children.
    Shaw K; Amstutz U; Hildebrand C; Rassekh SR; Hosking M; Neville K; Leeder JS; Hayden MR; Ross CJ; Carleton BC
    Pediatr Blood Cancer; 2014 Jun; 61(6):1055-62. PubMed ID: 24474498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal dosing of warfarin and other coumarin anticoagulants: the role of genetic polymorphisms.
    Daly AK
    Arch Toxicol; 2013 Mar; 87(3):407-20. PubMed ID: 23376975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacogenetic differences between warfarin, acenocoumarol and phenprocoumon.
    Beinema M; Brouwers JR; Schalekamp T; Wilffert B
    Thromb Haemost; 2008 Dec; 100(6):1052-7. PubMed ID: 19132230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients.
    Meckley LM; Wittkowsky AK; Rieder MJ; Rettie AE; Veenstra DL
    Thromb Haemost; 2008 Aug; 100(2):229-39. PubMed ID: 18690342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements in an adult Turkish population.
    Ozer N; Cam N; Tangurek B; Ozer S; Uyarel H; Oz D; Guney MR; Ciloglu F
    Heart Vessels; 2010 Mar; 25(2):155-62. PubMed ID: 20339978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refining the use of warfarin through genetic testing.
    Lee SC
    Int Angiol; 2008 Aug; 27(4):271-3. PubMed ID: 18677287
    [No Abstract]   [Full Text] [Related]  

  • 9. A new algorithm to predict warfarin dose from polymorphisms of CYP4F2 , CYP2C9 and VKORC1 and clinical variables: derivation in Han Chinese patients with non valvular atrial fibrillation.
    Wei M; Ye F; Xie D; Zhu Y; Zhu J; Tao Y; Yu F
    Thromb Haemost; 2012 Jun; 107(6):1083-91. PubMed ID: 22534826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warfarin dose prediction in children using pharmacometric bridging--comparison with published pharmacogenetic dosing algorithms.
    Hamberg AK; Friberg LE; Hanséus K; Ekman-Joelsson BM; Sunnegårdh J; Jonzon A; Lundell B; Jonsson EN; Wadelius M
    Eur J Clin Pharmacol; 2013 Jun; 69(6):1275-83. PubMed ID: 23307232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphisms in VKORC1 have more impact than CYP2C9 polymorphisms on early warfarin International Normalized Ratio control and bleeding rates.
    Lund K; Gaffney D; Spooner R; Etherington AM; Tansey P; Tait RC
    Br J Haematol; 2012 Jul; 158(2):256-261. PubMed ID: 22571356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CYP2C9 and VKORC1 polymorphisms influence warfarin dose variability in patients on long-term anticoagulation.
    Santos PC; Dinardo CL; Schettert IT; Soares RA; Kawabata-Yoshihara L; Bensenor IM; Krieger JE; Lotufo PA; Pereira AC
    Eur J Clin Pharmacol; 2013 Apr; 69(4):789-97. PubMed ID: 22990331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of warfarin dose-associated genotypes on the risk of hemorrhagic complications in Chinese patients on warfarin.
    Ma C; Zhang Y; Xu Q; Yang J; Zhang Y; Gao L; Xu B; Wang H; Li Y; Lu C; Yin T
    Int J Hematol; 2012 Dec; 96(6):719-28. PubMed ID: 23104259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ability of VKORC1 and CYP2C9 to predict therapeutic warfarin dose during the initial weeks of therapy.
    Ferder NS; Eby CS; Deych E; Harris JK; Ridker PM; Milligan PE; Goldhaber SZ; King CR; Giri T; McLeod HL; Glynn RJ; Gage BF
    J Thromb Haemost; 2010 Jan; 8(1):95-100. PubMed ID: 19874474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warfarin pharmacogenetics.
    Limdi NA; Veenstra DL
    Pharmacotherapy; 2008 Sep; 28(9):1084-97. PubMed ID: 18752379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of CYP2C9 and VKORC1 on warfarin response during initiation of therapy.
    Limdi NA; Wiener H; Goldstein JA; Acton RT; Beasley TM
    Blood Cells Mol Dis; 2009; 43(1):119-28. PubMed ID: 19297219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term anticoagulant effects of the CYP2C9 and VKORC1 genotypes in acenocoumarol users.
    Verhoef TI; Redekop WK; Buikema MM; Schalekamp T; Van Der Meer FJ; Le Cessie S; Wessels JA; Van Schie RM; De Boer A; Teichert M; Visser LE; Maitland-Van Der Zee AH;
    J Thromb Haemost; 2012 Apr; 10(4):606-14. PubMed ID: 22252093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacogenetics of warfarin: current status and future challenges.
    Wadelius M; Pirmohamed M
    Pharmacogenomics J; 2007 Apr; 7(2):99-111. PubMed ID: 16983400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warfarin pharmacogenomics in children.
    Vear SI; Stein CM; Ho RH
    Pediatr Blood Cancer; 2013 Sep; 60(9):1402-7. PubMed ID: 23682017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warfarin anticoagulation in children: is there a role for a personalized approach to dosing?
    Biss TT; Kamali F
    Pharmacogenomics; 2012 Aug; 13(11):1211-4. PubMed ID: 22920389
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.