These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
53 related articles for article (PubMed ID: 2327965)
1. High-efficiency transpeptidation catalysed by clostripain and electrostatic effects in substrate specificity. Yagisawa S; Watanabe S; Takaoka T; Azuma H Biochem J; 1990 Mar; 266(3):771-5. PubMed ID: 2327965 [TBL] [Abstract][Full Text] [Related]
2. Studies on enzymic condensation of long chain peptides. Yagisawa S; Watanabe S; Sato Y Biomed Biochim Acta; 1991; 50(10-11):S187-92. PubMed ID: 1820042 [TBL] [Abstract][Full Text] [Related]
3. Transpeptidation reactions of a specific substrate catalyzed by the Streptomyces R61 DD-peptidase: the structural basis of acyl acceptor specificity. Kumar I; Pratt RF Biochemistry; 2005 Aug; 44(30):9961-70. PubMed ID: 16042373 [TBL] [Abstract][Full Text] [Related]
4. [Stereochemistry of the transpeptidation reaction in the ribosome. The ribosome generates an alpha-helix in the synthesis of the protein polypeptide chain]. Lim VI; Spirin AS Dokl Akad Nauk SSSR; 1985; 280(1):235-9. PubMed ID: 3979258 [No Abstract] [Full Text] [Related]
5. Peptidyl transferase centre of bacterial ribosomes: substrate specificity and binding sites. Krayevsky AA; Kukhanova MK; Gottikh BP Nucleic Acids Res; 1975 Dec; 2(12):2223-36. PubMed ID: 802510 [TBL] [Abstract][Full Text] [Related]
6. Clostridium difficile sortase recognizes a (S/P)PXTG sequence motif and can accommodate diaminopimelic acid as a substrate for transpeptidation. van Leeuwen HC; Klychnikov OI; Menks MA; Kuijper EJ; Drijfhout JW; Hensbergen PJ FEBS Lett; 2014 Nov; 588(23):4325-33. PubMed ID: 25305382 [TBL] [Abstract][Full Text] [Related]
7. The application of papain, ficin and clostripain in kinetically controlled peptide synthesis in frozen aqueous solutions. Hänsler M; Ullmann G; Jakubke HD J Pept Sci; 1995; 1(5):283-7. PubMed ID: 9223006 [TBL] [Abstract][Full Text] [Related]
8. Substrate specificity of an alpha-amino acid ester hydrolase produced by Acetobacter turbidans A.T.C.C. 9325. Takahashi T; Yamazaki Y; Kato K Biochem J; 1974 Mar; 137(3):497-503. PubMed ID: 4424889 [TBL] [Abstract][Full Text] [Related]
9. Cleavage specificity of human rhinovirus-2 2A protease for peptide substrates. Wang QM; Sommergruber W; Johnson RB Biochem Biophys Res Commun; 1997 Jun; 235(3):562-6. PubMed ID: 9207196 [TBL] [Abstract][Full Text] [Related]
10. [Peptidyltransferase center of ribosomes. Structure and relationship to other ribosomal functions]. Kukhanova MK; Kraevskiĭ AA; Gottikh BP Mol Biol (Mosk); 1977; 11(6):1357-76. PubMed ID: 36555 [TBL] [Abstract][Full Text] [Related]
11. [Model substates and inhibitors of the peptidyltransferase center of ribosomes. Conformational possibilities in aqueous solution]. Diatkina NB; Kurochkin AV; Bobruskin ID; Florent'ev VL; Azhaev AV Mol Biol (Mosk); 1982; 16(3):581-4. PubMed ID: 7099157 [TBL] [Abstract][Full Text] [Related]
12. Mechanism and pathway of penicillopepsin-catalyzed transpeptidation and evidence for noncovalent trapping of amino acid and peptide intermediates. Blum M; Cunningham A; Pang H; Hofmann T J Biol Chem; 1991 May; 266(15):9501-7. PubMed ID: 2033049 [TBL] [Abstract][Full Text] [Related]
13. Subsite specificity studies on the unusual cysteine protease clostripain: charged residues in the P3 position indicate a narrow subsite region. Bordusa F; Ullmann D; Jakubke HD Biol Chem; 1997 Oct; 378(10):1193-8. PubMed ID: 9372191 [TBL] [Abstract][Full Text] [Related]
14. Acyl intermediates in penicillopepsin-catalysed reactions and a discussion of the mechanism of action of pepsins. Takahashi M; Hofmann T Biochem J; 1975 Jun; 147(3):549-63. PubMed ID: 1172664 [TBL] [Abstract][Full Text] [Related]
15. [The peptidyltransferase center of ribosomes--what is it?]. Kukhanova MK; Viktorova LS Mol Biol (Mosk); 1985; 19(2):371-7. PubMed ID: 2582233 [TBL] [Abstract][Full Text] [Related]
16. A contribution to the studies on donor site of peptidyl transferase with acylaminoacyl-nucleoside-5'-monophosphates. Cerná J; Rychlík I; Krayevsky AA; Gottikh BP Acta Biol Med Ger; 1974; 33(5-6):877-83. PubMed ID: 4469393 [No Abstract] [Full Text] [Related]
17. Investigations on the enzyme specificity of clostripain: a new efficient biocatalyst for the synthesis of peptide isosteres. Günther R; Stein A; Bordusa F J Org Chem; 2000 Mar; 65(6):1672-9. PubMed ID: 10750491 [TBL] [Abstract][Full Text] [Related]
18. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design. Kumar I; Pratt RF Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374 [TBL] [Abstract][Full Text] [Related]
19. [Enzymatic preparation of peptides of the general type: L-Ala-D-Glu-L-mesodiaminopimelyl (L)-D (140) Ala by transfer reactions between non radioactive corresponding peptides and D-alanine (140)]. Arminjon F; Guinand M; Michel G; Coyette J; Ghuysen JM Biochimie; 1976; 58(10):1167-72. PubMed ID: 827312 [TBL] [Abstract][Full Text] [Related]
20. Clostripain: production and use for peptide synthesis. Meiwes J; Müller W; Grabley S; Schudok M Biomed Biochim Acta; 1991; 50(10-11):S80-3. PubMed ID: 1820065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]