These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23279756)

  • 1. Transport properties of two finite armchair graphene nanoribbons.
    Rosales L; González JW
    Nanoscale Res Lett; 2013 Jan; 8(1):1. PubMed ID: 23279756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport properties of graphene nanoribbons with side-attached organic molecules.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transport properties of graphene quantum dots with non-centro-symmetric Gaussian deformation.
    Poszwa A
    Sci Rep; 2022 Jun; 12(1):9908. PubMed ID: 35701530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano resonances in hexagonal zigzag graphene rings under external magnetic flux.
    Faria D; Carrillo-Bastos R; Sandler N; Latgé A
    J Phys Condens Matter; 2015 May; 27(17):175301. PubMed ID: 25836340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum transport along the armchair and zigzag edges of β
    Davoudiniya M; Mirabbaszadeh K
    Phys Chem Chem Phys; 2021 Dec; 23(46):26285-26295. PubMed ID: 34787129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles study on the electronic properties of biphenylene, net-graphene, graphene+, and T-graphene based nanoribbons.
    Zhou W; Luo C; Chao Y; Xiong S; Long M; Chen T
    RSC Adv; 2024 Mar; 14(12):8067-8074. PubMed ID: 38454942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-orbital tight binding model for the electronic and optical properties of armchair graphene nanoribbons in the presence of a periodic potential.
    Hieu NN; Shih PH; Do TN; Nguyen CV
    J Phys Condens Matter; 2021 Feb; 33(15):. PubMed ID: 33482663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects analogous to the Kekulé distortion induced by pseudospin polarization in graphene nanoribbons: confinement and coupling by breakdown of chiral correlation.
    Mendoza M; López LIA
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35667369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings.
    Nguyen VH; Niquet YM; Dollfus P
    J Phys Condens Matter; 2014 May; 26(20):205301. PubMed ID: 24785639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mach-Zehnder-like interferometry with graphene nanoribbon networks.
    Sanz S; Papior N; Giedke G; Sánchez-Portal D; Brandbyge M; Frederiksen T
    J Phys Condens Matter; 2023 Jun; 35(37):. PubMed ID: 37220757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles study of heat transport properties of graphene nanoribbons.
    Tan ZW; Wang JS; Gan CK
    Nano Lett; 2011 Jan; 11(1):214-9. PubMed ID: 21158401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.
    Wu W; Guo W; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures.
    Kuo DMT
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons.
    Chen X; Wang H; Wan H; Song K; Zhou G
    J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB; Jalil MB; Tan SG; Liang G
    J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model.
    Wu Y; Childs PA
    Nanoscale Res Lett; 2011 Dec; 6(1):62. PubMed ID: 27502683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.