These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23279781)

  • 21. Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH).
    Morris RV; Lauer HV; Lawson CA; Gibson EK; Nace GA; Stewart C
    J Geophys Res; 1985 Mar; 90(B4):3126-44. PubMed ID: 11542003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous fluorine-doped γ-Fe2O3 hollow spheres: synthesis, growth mechanism, and their application in photocatalysis.
    Zhu LP; Wang LL; Bing NC; Huang C; Wang LJ; Liao GH
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12478-87. PubMed ID: 24245477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flower-like porous hematite nanoarchitectures achieved by complexation-mediated oxidation-hydrolysis reaction.
    Huang X; Guan J; Xiao Z; Tong G; Mou F; Fan X
    J Colloid Interface Sci; 2011 May; 357(1):36-45. PubMed ID: 21353233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective synthesis of alpha-FeOOH and alpha-Fe2O3 nanorods via a temperature controlled process.
    Dong Y; Yang H; Rao R; Zhang A
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4774-9. PubMed ID: 19928148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of hollow alpha-Fe2O3 spheres with carbon coating for Li-ion battery.
    Du Z; Zhang S; Zhao J; Wu X; Lin R
    J Nanosci Nanotechnol; 2013 May; 13(5):3602-5. PubMed ID: 23858911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facet-Controlling Agents Free Synthesis of Hematite Crystals with High-Index Planes: Excellent Photodegradation Performance and Mechanism Insight.
    Ding D; Huang Y; Zhou C; Liu Z; Ren J; Zhang R; Wang J; Zhang Y; Lei Z; Zhang Z; Zhi C
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):142-51. PubMed ID: 26651218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of the α-Fe
    Xue Y; Wang Y
    Nanoscale; 2020 May; 12(20):10912-10932. PubMed ID: 32412037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance.
    Zhao X; Hu C; Cao M
    Chem Asian J; 2013 Nov; 8(11):2701-7. PubMed ID: 23946108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinous α-Fe2O3 hierarchical structures anchored on Ni foam for supercapacitor electrodes and visible light driven photocatalysts.
    Zheng X; Han Z; Yao S; Xiao H; Chai F; Qu F; Wu X
    Dalton Trans; 2016 Apr; 45(16):7094-103. PubMed ID: 27005322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ni2+/surfactant-assisted route to porous α-Fe2O3 nanoarchitectures.
    Geng B; Tao B; Li X; Wei W
    Nanoscale; 2012 Mar; 4(5):1671-6. PubMed ID: 22307268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upgrading Low-Grade Iron Ore through Gangue Removal by a Combined Alkali Roasting and Hydrothermal Treatment.
    Mochizuki Y; Tsubouchi N
    ACS Omega; 2019 Nov; 4(22):19723-19734. PubMed ID: 31788604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-pot synthesis of porous hematite hollow microspheres and their application in water treatment.
    Li J; Lai X; Xing C; Wang D
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7707-10. PubMed ID: 21138015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application.
    Li L; Yu Y; Meng F; Tan Y; Hamers RJ; Jin S
    Nano Lett; 2012 Feb; 12(2):724-31. PubMed ID: 22214175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.
    Shen S; Zhou J; Dong CL; Hu Y; Tseng EN; Guo P; Guo L; Mao SS
    Sci Rep; 2014 Oct; 4():6627. PubMed ID: 25316219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hollow cocoon-like hematite mesoparticles of nanoparticle aggregates: structural evolution and superior performances in lithium ion batteries.
    Zhu J; Ng KY; Deng D
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2996-3001. PubMed ID: 24467218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface Rh-Boosted Photoelectrochemical Water Oxidation of α-Fe
    Kim YM; Hong Y; Hur K; Kim MS; Sung YM
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37290-37299. PubMed ID: 37489940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fe
    Numpilai T; Donphai W; Du Z; Cheng CK; Charoenchaitrakool M; Chareonpanich M; Witoon T
    Chemosphere; 2022 Dec; 308(Pt 2):136356. PubMed ID: 36087737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.