BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23279817)

  • 1. A novel derivation of a within-batch sampling plan based on a Poisson-gamma model characterising low microbial counts in foods.
    Gonzales-Barron U; Zwietering MH; Butler F
    Int J Food Microbiol; 2013 Feb; 161(2):84-96. PubMed ID: 23279817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usefulness of indicator bacteria as potential marker of Campylobacter contamination in broiler carcasses.
    Roccato A; Mancin M; Barco L; Cibin V; Antonello K; Cocola F; Ricci A
    Int J Food Microbiol; 2018 Jul; 276():63-70. PubMed ID: 29674142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the effect of chilling on the occurrence of Salmonella on pig carcasses at study, abattoir and batch levels by meta-analysis.
    Gonzales-Barron U; Cadavez V; Sheridan JJ; Butler F
    Int J Food Microbiol; 2013 May; 163(2-3):101-13. PubMed ID: 23558193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies.
    Jongenburger I; Reij MW; Boer EP; Gorris LG; Zwietering MH
    Int J Food Microbiol; 2011 Nov; 151(1):62-9. PubMed ID: 21893361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model approach to estimate the probability of accepting a lot of heterogeneously contaminated powdered food using different sampling strategies.
    Valero A; Pasquali F; De Cesare A; Manfreda G
    Int J Food Microbiol; 2014 Aug; 184():35-8. PubMed ID: 24462218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiological sampling of swine carcasses: a comparison of data obtained by swabbing with medical gauze and data collected routinely by excision at Swedish abattoirs.
    Lindblad M
    Int J Food Microbiol; 2007 Sep; 118(2):180-5. PubMed ID: 17706823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hygienic treatments during slaughtering on microbial dynamics and contamination of sheep meat.
    Omer MK; Hauge SJ; Østensvik Ø; Moen B; Alvseike O; Røtterud OJ; Prieto M; Dommersnes S; Nesteng OH; Nesbakken T
    Int J Food Microbiol; 2015 Feb; 194():7-14. PubMed ID: 25461602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Bayesian models to assess between- and within-batch variability of pathogen contamination in food.
    Commeau N; Cornu M; Albert I; Denis JB; Parent E
    Risk Anal; 2012 Mar; 32(3):395-415. PubMed ID: 22043854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling and sample preparation methods for determining concentrations of mycotoxins in foods and feeds.
    IARC Sci Publ; 2012; (158):39-51. PubMed ID: 23477195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of slaughterhouse and day of sample on the probability of a pig carcass being Salmonella-positive according to the Enterobacteriaceae count in the largest Brazilian pork production region.
    Corbellini LG; Júnior AB; de Freitas Costa E; Duarte AS; Albuquerque ER; Kich JD; Cardoso M; Nauta M
    Int J Food Microbiol; 2016 Jul; 228():58-66. PubMed ID: 27107299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic review of studies on Escherichia coli and Enterobacteriaceae on beef carcasses at the slaughterhouse.
    Barco L; Belluco S; Roccato A; Ricci A
    Int J Food Microbiol; 2015 Aug; 207():30-9. PubMed ID: 25978803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiological carcass sampling methods to achieve compliance with 2001/471/EC and new hygiene regulations.
    Byrne B; Dunne G; Lyng J; Bolton DJ
    Res Microbiol; 2005; 156(1):104-6. PubMed ID: 15636754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiological sampling plan based on risk classification to verify supplier selection and production of served meals in food service operation.
    Lahou E; Jacxsens L; Van Landeghem F; Uyttendaele M
    Food Microbiol; 2014 Aug; 41():60-75. PubMed ID: 24750814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot water surface pasteurisation of lamb carcasses: microbial effects and cost-benefit considerations.
    Hauge SJ; Wahlgren M; Røtterud OJ; Nesbakken T
    Int J Food Microbiol; 2011 Mar; 146(1):69-75. PubMed ID: 21356564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proposal of performance objectives and sampling schemes for Listeria monocytogenes in fresh meat intended to be eaten cooked under different storage practices.
    De Cesare A; Valero A; Rodríguez-Lázaro D; Hernández M; Pasquali F; Manfreda G
    Int J Food Microbiol; 2014 Aug; 184():50-4. PubMed ID: 24560104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitting a distribution to microbial counts: making sense of zeroes.
    Duarte AS; Stockmarr A; Nauta MJ
    Int J Food Microbiol; 2015 Mar; 196():40-50. PubMed ID: 25522056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excision vs sponge swabbing - a comparison of methods for the microbiological sampling of beef, pork and lamb carcasses.
    Pearce RA; Bolton DJ
    J Appl Microbiol; 2005; 98(4):896-900. PubMed ID: 15752336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Microbial Risk Assessment of Pharmaceutical Products.
    Eissa ME
    PDA J Pharm Sci Technol; 2017; 71(3):245-251. PubMed ID: 27974628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between the density of different indicator organisms on sheep and beef carcasses and in frozen beef and sheep meat.
    Jordan D; Phillips D; Sumner J; Morris S; Jenson I
    J Appl Microbiol; 2007 Jan; 102(1):57-64. PubMed ID: 17184320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Count data distributions and their zero-modified equivalents as a framework for modelling microbial data with a relatively high occurrence of zero counts.
    Gonzales-Barron U; Kerr M; Sheridan JJ; Butler F
    Int J Food Microbiol; 2010 Jan; 136(3):268-77. PubMed ID: 19913934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.