BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23279938)

  • 21. The synergistic effects of betulin with acyclovir against herpes simplex viruses.
    Gong Y; Raj KM; Luscombe CA; Gadawski I; Tam T; Chu J; Gibson D; Carlson R; Sacks SL
    Antiviral Res; 2004 Nov; 64(2):127-30. PubMed ID: 15498608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclodextrin based nanosponges for pharmaceutical use: a review.
    Tejashri G; Amrita B; Darshana J
    Acta Pharm; 2013 Sep; 63(3):335-58. PubMed ID: 24152895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study.
    Ansari KA; Vavia PR; Trotta F; Cavalli R
    AAPS PharmSciTech; 2011 Mar; 12(1):279-86. PubMed ID: 21240574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carboxylate cross-linked cyclodextrin: A nanoporous scaffold for enhancement of rosuvastatin oral bioavailability.
    Gabr MM; Mortada SM; Sallam MA
    Eur J Pharm Sci; 2018 Jan; 111():1-12. PubMed ID: 28931488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia.
    Shende P; Deshmukh K; Trotta F; Caldera F
    Int J Pharm; 2013 Nov; 456(1):95-100. PubMed ID: 23954237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model.
    Cırpanlı Y; Allard E; Passirani C; Bilensoy E; Lemaire L; Calış S; Benoit JP
    Int J Pharm; 2011 Jan; 403(1-2):201-6. PubMed ID: 20951783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity.
    Swaminathan S; Pastero L; Serpe L; Trotta F; Vavia P; Aquilano D; Trotta M; Zara G; Cavalli R
    Eur J Pharm Biopharm; 2010 Feb; 74(2):193-201. PubMed ID: 19900544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing.
    Zeng P; Xu Y; Zeng C; Ren H; Peng M
    Int J Pharm; 2011 Aug; 415(1-2):259-66. PubMed ID: 21645597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of C3-arylated-3-deazauridine derivatives with potent anti-HSV-1 activities.
    Lalut J; Tripoteau L; Marty C; Bares H; Bourgougnon N; Felpin FX
    Bioorg Med Chem Lett; 2012 Dec; 22(24):7461-4. PubMed ID: 23141915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new homodimer of aciclovir as a prodrug with increased solubility and antiviral activity.
    Brandi G; Rossi L; Schiavano GF; Millo E; Magnani M
    Int J Antimicrob Agents; 2009 Aug; 34(2):177-80. PubMed ID: 19394201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphoramidate derivatives of acyclovir: synthesis and antiviral activity in HIV-1 and HSV-1 models in vitro.
    Zakirova NF; Shipitsyn AV; Jasko MV; Prokofjeva MM; Andronova VL; Galegov GA; Prassolov VS; Kochetkov SN
    Bioorg Med Chem; 2012 Oct; 20(19):5802-9. PubMed ID: 22954898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclodextrin-based nanosponges as vehicles for antiviral drugs: challenges and perspectives.
    Lembo D; Trotta F; Cavalli R
    Nanomedicine (Lond); 2018 Mar; 13(5):477-480. PubMed ID: 29376455
    [No Abstract]   [Full Text] [Related]  

  • 33. Synergistic penetration of ethosomes and lipophilic prodrug on the transdermal delivery of acyclovir.
    Zhou Y; Wei YH; Zhang GQ; Wu XA
    Arch Pharm Res; 2010 Apr; 33(4):567-74. PubMed ID: 20422366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study.
    Jingou J; Shilei H; Weiqi L; Danjun W; Tengfei W; Yi X
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):103-7. PubMed ID: 21112190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual sustained release delivery system for multiple route therapy of an antiviral drug.
    Ramyadevi D; Sandhya P
    Drug Deliv; 2014 Jun; 21(4):276-92. PubMed ID: 24134619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploration of statistical experimental design to improve entrapment efficiency of acyclovir in poly (d, l) lactide nanoparticles.
    Patel PJ; Gohel MC; Acharya SR
    Pharm Dev Technol; 2014 Mar; 19(2):200-12. PubMed ID: 23432525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and antiherpetic activity of acyclovir phosphonates.
    Karpenko IL; Jasko MV; Andronova VL; Ivanov AV; Kukhanova MK; Galegov GA; Skoblov YS
    Nucleosides Nucleotides Nucleic Acids; 2003 Mar; 22(3):319-28. PubMed ID: 12816390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier.
    Gil ES; Wu L; Xu L; Lowe TL
    Biomacromolecules; 2012 Nov; 13(11):3533-41. PubMed ID: 23066958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir.
    Malik NS; Ahmad M; Minhas MU
    PLoS One; 2017; 12(2):e0172727. PubMed ID: 28245257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and solid-state characterization of bupivacaine hydrochloride cyclodextrin complexes aimed for buccal delivery.
    Jug M; Maestrelli F; Bragagni M; Mura P
    J Pharm Biomed Anal; 2010 May; 52(1):9-18. PubMed ID: 20004541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.