BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23280039)

  • 1. Changes in acyl-coenzyme A pools in sunflower seeds with modified fatty acid composition.
    Aznar-Moreno JA; Martínez-Force E; Venegas-Calerón M; Garcés R; Salas JJ
    Phytochemistry; 2013 Mar; 87():39-50. PubMed ID: 23280039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.
    Aznar-Moreno JA; Venegas Calerón M; Martínez-Force E; Garcés R; Mullen R; Gidda SK; Salas JJ
    Physiol Plant; 2014 Mar; 150(3):363-73. PubMed ID: 24102504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization and structural modelling of Helianthus annuus (sunflower) ketoacyl-CoA synthases and their role in seed oil composition.
    González-Mellado D; Salas JJ; Venegas-Calerón M; Moreno-Pérez AJ; Garcés R; Martínez-Force E
    Planta; 2019 Jun; 249(6):1823-1836. PubMed ID: 30847571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.
    Aznar-Moreno JA; Venegas-Calerón M; Martínez-Force E; Garcés R; Salas JJ
    Planta; 2016 Aug; 244(2):479-90. PubMed ID: 27095109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Very long chain fatty acid synthesis in sunflower kernels.
    Salas JJ; Martínez-Force E; Garcés R
    J Agric Food Chem; 2005 Apr; 53(7):2710-6. PubMed ID: 15796615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and function of a sunflower (Helianthus annuus L.) Class II acyl-CoA-binding protein.
    Aznar-Moreno JA; Venegas-Calerón M; Du ZY; Garcés R; Tanner JA; Chye ML; Martínez-Force E; Salas JJ
    Plant Sci; 2020 Nov; 300():110630. PubMed ID: 33180709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biosynthesis of triacylglycerols in microsomal preparations of developing cotyledons of sunflower (Helianthus annuus L.).
    Stymne S; Stobart AK
    Biochem J; 1984 Jun; 220(2):481-8. PubMed ID: 6743281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds.
    Ruiz-López N; Garcés R; Harwood JL; Martínez-Force E
    Plant Physiol Biochem; 2010; 48(2-3):73-80. PubMed ID: 20044264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a potential bottleneck in branched chain fatty acid incorporation into triacylglycerol for lipid biosynthesis in agronomic plants.
    Nlandu Mputu M; Rhazi L; Vasseur G; Vu TD; Gontier E; Thomasset B
    Biochimie; 2009 Jun; 91(6):703-10. PubMed ID: 19327383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fatty-acyl-CoAs on the elongation of saturated fatty acid in porcine aorta microsomes.
    Murakami K; Yoshida S; Takeshita M
    Biochem Int; 1990; 21(2):297-304. PubMed ID: 2403369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acyl-coenzyme A binding protein expression alters liver fatty acyl-coenzyme A metabolism.
    Huang H; Atshaves BP; Frolov A; Kier AB; Schroeder F
    Biochemistry; 2005 Aug; 44(30):10282-97. PubMed ID: 16042405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors of fatty acid biosynthesis in sunflower seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Plant Physiol; 2006 Sep; 163(9):885-94. PubMed ID: 16500723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1985 Sep; 230(2):379-88. PubMed ID: 4052051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.
    Larson TR; Edgell T; Byrne J; Dehesh K; Graham IA
    Plant J; 2002 Nov; 32(4):519-27. PubMed ID: 12445123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-related non-homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds.
    Fernández-Moya V; Martínez-Force E; Garcés R
    Planta; 2003 Mar; 216(5):834-40. PubMed ID: 12624771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acylcarnitines participate in developmental processes associated to lipid metabolism in plants.
    Nguyen PJ; Rippa S; Rossez Y; Perrin Y
    Planta; 2016 Apr; 243(4):1011-22. PubMed ID: 26748916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing of phosphatidic acid and phosphatidylethanolamine by acyl-CoA: lysophospholipid acyltransferases in developing Camelina sativa seeds.
    Klińska S; Jasieniecka-Gazarkiewicz K; Demski K; Banaś A
    Planta; 2020 Jun; 252(1):4. PubMed ID: 32524208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acyl-CoA elongation in Blatella germanica integumental microsomes.
    Juárez MP
    Arch Insect Biochem Physiol; 2004 Aug; 56(4):170-8. PubMed ID: 15274178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of lysophosphatidylcholine in lipid synthesis by developing sunflower (Helianthus annuus L.) seed microsomes.
    Rochester CP; Bishop DG
    Arch Biochem Biophys; 1984 Jul; 232(1):249-58. PubMed ID: 6742852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis.
    Zhao L; Katavic V; Li F; Haughn GW; Kunst L
    Plant J; 2010 Dec; 64(6):1048-58. PubMed ID: 21143684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.