These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 23280053)
21. A hybrid electrochemical-colorimetric sensing platform for detection of explosives. Forzani ES; Lu D; Leright MJ; Aguilar AD; Tsow F; Iglesias RA; Zhang Q; Lu J; Li J; Tao N J Am Chem Soc; 2009 Feb; 131(4):1390-1. PubMed ID: 19173664 [TBL] [Abstract][Full Text] [Related]
22. Nanosized rigid pi-conjugated molecular heterojunctions with multi[60]fullerenes: facile synthesis and photophysical properties. Wang JL; Duan XF; Jiang B; Gan LB; Pei J; He C; Li YF J Org Chem; 2006 Jun; 71(12):4400-10. PubMed ID: 16749767 [TBL] [Abstract][Full Text] [Related]
23. Development of a new SPME-HPLC-UV method for the analysis of nitro explosives on reverse phase amide column and application to analysis of aqueous samples. Gaurav ; Malik AK; Rai PK J Hazard Mater; 2009 Dec; 172(2-3):1652-8. PubMed ID: 19744774 [TBL] [Abstract][Full Text] [Related]
24. Detection of explosives by positive corona discharge ion mobility spectrometry. Tabrizchi M; Ilbeigi V J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055 [TBL] [Abstract][Full Text] [Related]
25. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. Zhang W; Qiu LG; Yuan YP; Xie AJ; Shen YH; Zhu JF J Hazard Mater; 2012 Jun; 221-222():147-54. PubMed ID: 22560174 [TBL] [Abstract][Full Text] [Related]
26. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection. Ma J; Lv L; Zou G; Zhang Q ACS Appl Mater Interfaces; 2015 Jan; 7(1):241-9. PubMed ID: 25487515 [TBL] [Abstract][Full Text] [Related]
27. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid. Santra DC; Bera MK; Sukul PK; Malik S Chemistry; 2016 Feb; 22(6):2012-2019. PubMed ID: 26743445 [TBL] [Abstract][Full Text] [Related]
28. Template-directed synthesis of silica nanotubes for explosive detection. Yildirim A; Acar H; Erkal TS; Bayindir M; Guler MO ACS Appl Mater Interfaces; 2011 Oct; 3(10):4159-64. PubMed ID: 21942571 [TBL] [Abstract][Full Text] [Related]
29. Fluorescent and colorimetric probes for mercury(II): tunable structures of electron donor and π-conjugated bridge. Cheng X; Li S; Jia H; Zhong A; Zhong C; Feng J; Qin J; Li Z Chemistry; 2012 Feb; 18(6):1691-9. PubMed ID: 22223588 [TBL] [Abstract][Full Text] [Related]
30. Sensors--an effective approach for the detection of explosives. Singh S J Hazard Mater; 2007 Jun; 144(1-2):15-28. PubMed ID: 17379401 [TBL] [Abstract][Full Text] [Related]
31. CH3-π interaction of explosives with cavity of a TPE macrocycle: the key cause for highly selective detection of TNT. Feng HT; Wang JH; Zheng YS ACS Appl Mater Interfaces; 2014 Nov; 6(22):20067-74. PubMed ID: 25319016 [TBL] [Abstract][Full Text] [Related]
32. Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Wang X; Guo Y; Li D; Chen H; Sun RC Chem Commun (Camb); 2012 Jun; 48(45):5569-71. PubMed ID: 22362418 [TBL] [Abstract][Full Text] [Related]
33. New method for calculating densities of nitroaromatic explosive compounds. Keshavarz MH J Hazard Mater; 2007 Jun; 145(1-2):263-9. PubMed ID: 17174024 [TBL] [Abstract][Full Text] [Related]
34. Detection and discrimination of low concentration explosives using MOS nanoparticle sensors. Gui Y; Xie C; Xu J; Wang G J Hazard Mater; 2009 May; 164(2-3):1030-5. PubMed ID: 18930348 [TBL] [Abstract][Full Text] [Related]
35. A perfectly aligned 63 helical tubular cuprous bromide single crystal for selective photo-catalysis, luminescence and sensing of nitro-explosives. Yao RX; Hailili R; Cui X; Wang L; Zhang XM Dalton Trans; 2015 Feb; 44(7):3410-6. PubMed ID: 25601196 [TBL] [Abstract][Full Text] [Related]
36. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Stringer RC; Gangopadhyay S; Grant SA Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483 [TBL] [Abstract][Full Text] [Related]
37. Spectroscopic and theoretical study of the molecular and electronic structures of a terthiophene-based quinodimethane. Casado J; Pappenfus TM; Mann KR; Ortí E; Viruela PM; Milián B; Hernández V; López Navarrete JT Chemphyschem; 2004 Apr; 5(4):529-39. PubMed ID: 15139227 [TBL] [Abstract][Full Text] [Related]
38. Molecular engineering in symmetric end-substituted oligothiophene derivatives: analysis of condensed-phase photoemission spectra using semiempirical Hartree-Fock calculations. Kushto GP; Watkins NJ; Mäkinen AJ; Kafafi ZH J Phys Chem B; 2007 May; 111(21):5794-802. PubMed ID: 17487995 [TBL] [Abstract][Full Text] [Related]
39. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives. Beer S; Müller G; Wöllenstein J Talanta; 2012 Jan; 89():441-7. PubMed ID: 22284515 [TBL] [Abstract][Full Text] [Related]
40. Effect of axially projected oligothiophene pendants and nitro-functionalized diimine ligands on the lowest excited state in cationic Ir(III) bis-cyclometalates. Schwartz KR; Chitta R; Bohnsack JN; Ceckanowicz DJ; Miró P; Cramer CJ; Mann KR Inorg Chem; 2012 May; 51(9):5082-94. PubMed ID: 22515216 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]