These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23280109)

  • 1. Studying the protein corona on nanoparticles by FCS.
    Nienhaus GU; Maffre P; Nienhaus K
    Methods Enzymol; 2013; 519():115-37. PubMed ID: 23280109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona.
    Milani S; Bombelli FB; Pitek AS; Dawson KA; Rädler J
    ACS Nano; 2012 Mar; 6(3):2532-41. PubMed ID: 22356488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy.
    Maffre P; Nienhaus K; Amin F; Parak WJ; Nienhaus GU
    Beilstein J Nanotechnol; 2011; 2():374-83. PubMed ID: 22003445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical characterisation of cationic polybutylcyanoacrylate-nanoparticles by fluorescence correlation spectroscopy.
    Weyermann J; Lochmann D; Georgens C; Rais I; Kreuter J; Karas M; Wolkenhauer M; Zimmer A
    Eur J Pharm Biopharm; 2004 Jul; 58(1):25-35. PubMed ID: 15207534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.
    Treuel L; Brandholt S; Maffre P; Wiegele S; Shang L; Nienhaus GU
    ACS Nano; 2014 Jan; 8(1):503-13. PubMed ID: 24377255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective.
    Wang H; Lin Y; Nienhaus K; Nienhaus GU
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Jul; 10(4):e1500. PubMed ID: 29071798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake.
    Pelaz B; del Pino P; Maffre P; Hartmann R; Gallego M; Rivera-Fernández S; de la Fuente JM; Nienhaus GU; Parak WJ
    ACS Nano; 2015 Jul; 9(7):6996-7008. PubMed ID: 26079146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles - a fluorescence correlation spectroscopy study.
    Maffre P; Brandholt S; Nienhaus K; Shang L; Parak WJ; Nienhaus GU
    Beilstein J Nanotechnol; 2014; 5():2036-47. PubMed ID: 25551031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a Monolayer Protein Corona around Polystyrene Nanoparticles and Implications for Nanoparticle Agglomeration.
    Wang H; Ma R; Nienhaus K; Nienhaus GU
    Small; 2019 May; 15(22):e1900974. PubMed ID: 31021510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona.
    Martinez-Moro M; Di Silvio D; Moya SE
    Biophys Chem; 2019 Oct; 253():106218. PubMed ID: 31325709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer from silica core-surfactant shell nanoparticles to hosted molecular fluorophores.
    Rampazzo E; Bonacchi S; Juris R; Montalti M; Genovese D; Zaccheroni N; Prodi L; Rambaldi DC; Zattoni A; Reschiglian P
    J Phys Chem B; 2010 Nov; 114(45):14605-13. PubMed ID: 21070057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact.
    Casals E; Puntes VF
    Nanomedicine (Lond); 2012 Dec; 7(12):1917-30. PubMed ID: 23249335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of nanoparticle transport inside coarse-grained geological media using magnetic resonance imaging.
    Ramanan B; Holmes WM; Sloan WT; Phoenix VR
    Environ Sci Technol; 2012 Jan; 46(1):360-6. PubMed ID: 22091923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a molecular understanding of nanoparticle-protein interactions.
    Treuel L; Nienhaus GU
    Biophys Rev; 2012 Jun; 4(2):137-147. PubMed ID: 28510093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size.
    Zhang W; Kalive M; Capco DG; Chen Y
    Nanotechnology; 2010 Sep; 21(35):355103. PubMed ID: 20693617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of gold nanoparticles with common human blood proteins.
    Lacerda SH; Park JJ; Meuse C; Pristinski D; Becker ML; Karim A; Douglas JF
    ACS Nano; 2010 Jan; 4(1):365-79. PubMed ID: 20020753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release.
    Cifuentes-Rius A; de Puig H; Kah JC; Borros S; Hamad-Schifferli K
    ACS Nano; 2013 Nov; 7(11):10066-74. PubMed ID: 24128271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel multiparametric approach to elucidate the surface amine-silanization reaction profile on fluorescent silica nanoparticles.
    Roy S; Dixit CK; Woolley R; MacCraith BD; O'Kennedy R; McDonagh C
    Langmuir; 2010 Dec; 26(23):18125-34. PubMed ID: 21069990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence lifetime analysis and fluorescence correlation spectroscopy elucidate the internal architecture of fluorescent silica nanoparticles.
    Roy S; Woolley R; MacCraith BD; McDonagh C
    Langmuir; 2010 Sep; 26(17):13741-6. PubMed ID: 20677746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.