These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23280515)

  • 21. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP).
    Forney MW; Ganter MJ; Staub JW; Ridgley RD; Landi BJ
    Nano Lett; 2013 Sep; 13(9):4158-63. PubMed ID: 23902472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.
    Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y
    Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Woven-Like Carbon Micropattern Decorated with Silicon Nanoparticles for Use in Lithium-Ion Batteries.
    Kang DY; Kim C; Gueon D; Park G; Kim JS; Lee JK; Moon JH
    ChemSusChem; 2015 Oct; 8(20):3414-8. PubMed ID: 26383881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Managing voids of Si anodes in lithium ion batteries.
    Li X; Zhi L
    Nanoscale; 2013 Oct; 5(19):8864-73. PubMed ID: 23942726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virus-enabled silicon anode for lithium-ion batteries.
    Chen X; Gerasopoulos K; Guo J; Brown A; Wang C; Ghodssi R; Culver JN
    ACS Nano; 2010 Sep; 4(9):5366-72. PubMed ID: 20707328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key Factors for Binders to Enhance the Electrochemical Performance of Silicon Anodes through Molecular Design.
    Wang H; Wu B; Wu X; Zhuang Q; Liu T; Pan Y; Shi G; Yi H; Xu P; Xiong Z; Chou SL; Wang B
    Small; 2022 Jan; 18(1):e2101680. PubMed ID: 34480396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Study to Explore the Suitability of LiNi
    Cabello M; Gucciardi E; Liendo G; Caizán-Juananera L; Carriazo D; Villaverde A
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.
    Cui LF; Yang Y; Hsu CM; Cui Y
    Nano Lett; 2009 Sep; 9(9):3370-4. PubMed ID: 19655765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.
    Park J; Kim GP; Nam I; Park S; Yi J
    Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.
    Zhao K; Wang WL; Gregoire J; Pharr M; Suo Z; Vlassak JJ; Kaxiras E
    Nano Lett; 2011 Jul; 11(7):2962-7. PubMed ID: 21692465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries.
    Wang H; Wu J; Cai C; Guo J; Fan H; Zhu C; Dong H; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5602-8. PubMed ID: 24684271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.
    Nirmale TC; Kale BB; Varma AJ
    Int J Biol Macromol; 2017 Oct; 103():1032-1043. PubMed ID: 28554795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries.
    Murase M; Yabuuchi N; Han ZJ; Son JY; Cui YT; Oji H; Komaba S
    ChemSusChem; 2012 Dec; 5(12):2307-11. PubMed ID: 23169703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries.
    Delpuech N; Dupre N; Moreau P; Bridel JS; Gaubicher J; Lestriez B; Guyomard D
    ChemSusChem; 2016 Apr; 9(8):841-8. PubMed ID: 26915951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking.
    Yoon J; Oh DX; Jo C; Lee J; Hwang DS
    Phys Chem Chem Phys; 2014 Dec; 16(46):25628-35. PubMed ID: 25351494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries.
    Liu H; Hu L; Meng YS; Li Q
    Nanoscale; 2013 Nov; 5(21):10376-83. PubMed ID: 24057142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands.
    Cho JH; Picraux ST
    Nano Lett; 2013; 13(11):5740-7. PubMed ID: 24144166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.