These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 23280552)
1. Analysis of a high-throughput cone-and-plate apparatus for the application of defined spatiotemporal flow to cultured cells. Spruell C; Baker AB Biotechnol Bioeng; 2013 Jun; 110(6):1782-93. PubMed ID: 23280552 [TBL] [Abstract][Full Text] [Related]
2. Novel cone-and-plate flow chamber with controlled distribution of wall fluid shear stress. Ye C; Ali S; Sun Q; Guo M; Liu Y; Gao Y; Huo B Comput Biol Med; 2019 Mar; 106():140-148. PubMed ID: 30721821 [TBL] [Abstract][Full Text] [Related]
3. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. Sucosky P; Padala M; Elhammali A; Balachandran K; Jo H; Yoganathan AP J Biomech Eng; 2008 Jun; 130(3):035001. PubMed ID: 18532871 [TBL] [Abstract][Full Text] [Related]
4. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Buschmann MH; Dieterich P; Adams NA; Schnittler HJ Biotechnol Bioeng; 2005 Mar; 89(5):493-502. PubMed ID: 15648084 [TBL] [Abstract][Full Text] [Related]
5. Oscillatory flow in a cone-and-plate bioreactor. Chung CA; Tzou MR; Ho RW J Biomech Eng; 2005 Aug; 127(4):601-10. PubMed ID: 16121530 [TBL] [Abstract][Full Text] [Related]
6. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors. Belfiore LA; Bonani W; Leoni M; Belfiore CJ Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374 [TBL] [Abstract][Full Text] [Related]
7. Effect of secondary flow on biological experiments in the cone-plate viscometer: methods for estimating collision frequency, wall shear stress and inter-particle interactions in non-linear flow. Shankaran H; Neelamegham S Biorheology; 2001; 38(4):275-304. PubMed ID: 11673645 [TBL] [Abstract][Full Text] [Related]
8. A disk-type apparatus for applying fluid shear stress on cultured endothelial cell. Nomura H; Ishikawa C; Komatsuda T; Ando J; Kamiya A Biorheology; 1988; 25(3):461-70. PubMed ID: 3250628 [TBL] [Abstract][Full Text] [Related]
9. Quantifying fluid shear stress in a rocking culture dish. Zhou X; Liu D; You L; Wang L J Biomech; 2010 May; 43(8):1598-602. PubMed ID: 20185133 [TBL] [Abstract][Full Text] [Related]
10. An advanced cone-and-plate reactor for the in vitro-application of shear stress on adherent cells. Dreyer L; Krolitzki B; Autschbach R; Vogt P; Welte T; Ngezahayo A; Glasmacher B Clin Hemorheol Microcirc; 2011; 49(1-4):391-7. PubMed ID: 22214709 [TBL] [Abstract][Full Text] [Related]
11. Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers. Franzoni M; Cattaneo I; Ene-Iordache B; Oldani A; Righettini P; Remuzzi A Cytotechnology; 2016 Oct; 68(5):1885-96. PubMed ID: 26754843 [TBL] [Abstract][Full Text] [Related]
12. An apparatus for studying the response of cultured endothelial cells to stresses. Shen L; Qiao A; Ding H; Mo G; Xu G; Du Y; Li M; Chen Z; Zeng Y Australas Phys Eng Sci Med; 2006 Jun; 29(2):196-202. PubMed ID: 16845925 [TBL] [Abstract][Full Text] [Related]
13. Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Schnittler HJ; Franke RP; Akbay U; Mrowietz C; Drenckhahn D Am J Physiol; 1993 Jul; 265(1 Pt 1):C289-98. PubMed ID: 8338136 [TBL] [Abstract][Full Text] [Related]
14. [Comparison of adhesion of different endothelial cells under shear stress load in the flow field in vitro]. Xiao Z; Zhang B; Zhang E; Xu W; Shi Y; Guo Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):157-62. PubMed ID: 21485205 [TBL] [Abstract][Full Text] [Related]
15. Computational analysis of fluid flow within a device for applying biaxial strain to cultured cells. Lee J; Baker AB J Biomech Eng; 2015 May; 137(5):051006. PubMed ID: 25611013 [TBL] [Abstract][Full Text] [Related]
16. Pumpless microfluidic device with open top cell culture under oscillatory shear stress. Chen Z; Zilberberg J; Lee W Biomed Microdevices; 2020 Aug; 22(3):58. PubMed ID: 32833129 [TBL] [Abstract][Full Text] [Related]
17. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells. Wang YX; Xiang C; Liu B; Zhu Y; Luan Y; Liu ST; Qin KR Biomed Eng Online; 2016 Dec; 15(Suppl 2):154. PubMed ID: 28155716 [TBL] [Abstract][Full Text] [Related]
18. Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates. Salek MM; Sattari P; Martinuzzi RJ Ann Biomed Eng; 2012 Mar; 40(3):707-28. PubMed ID: 22042624 [TBL] [Abstract][Full Text] [Related]
19. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction. Anderson EJ; Falls TD; Sorkin AM; Knothe Tate ML Biomed Eng Online; 2006 May; 5():27. PubMed ID: 16672051 [TBL] [Abstract][Full Text] [Related]
20. 3D numerical simulation of coronary blood flow and its effect on endothelial cell activation. Yin W; Shanmugavelayudam SK; Rubenstein DA Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4003-6. PubMed ID: 19964091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]