These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23280660)

  • 1. Phenylalanine-based polyarylacetylenes as enantiomer-differentiating alignment media.
    Krupp A; Reggelin M
    Magn Reson Chem; 2012 Dec; 50 Suppl 1():S45-52. PubMed ID: 23280660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyacetylenes as enantiodifferentiating alignment media.
    Meyer NC; Krupp A; Schmidts V; Thiele CM; Reggelin M
    Angew Chem Int Ed Engl; 2012 Aug; 51(33):8334-8. PubMed ID: 22829519
    [No Abstract]   [Full Text] [Related]  

  • 3. Valine derived poly (acetylenes) as versatile chiral lyotropic liquid crystalline alignment media for RDC-based structure elucidations.
    Krupp A; Noll M; Reggelin M
    Magn Reson Chem; 2021 May; 59(5):577-586. PubMed ID: 32012341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyaspartates as Thermoresponsive Enantiodifferentiating Helically Chiral Alignment Media for Anisotropic NMR Spectroscopy.
    Schwab M; Herold D; Thiele CM
    Chemistry; 2017 Oct; 23(58):14576-14584. PubMed ID: 28837254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual memory of enantiomeric helices in a polyacetylene induced by a single enantiomer.
    Miyagawa T; Furuko A; Maeda K; Katagiri H; Furusho Y; Yashima E
    J Am Chem Soc; 2005 Apr; 127(14):5018-9. PubMed ID: 15810826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and orientation of small molecules dissolved in the liquid crystalline phases of CsPFO/water system by multinuclear NMR.
    Borsacchi S; Catalano D; Veracini CA
    Phys Chem Chem Phys; 2009 May; 11(20):3996-4006. PubMed ID: 19440629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and chiroptical properties of a helical poly(phenylacetylene) bearing optically active pyrene pendants.
    Lin H; Morino K; Yashima E
    Chirality; 2008 Mar; 20(3-4):386-92. PubMed ID: 17724655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rational design for the directed helicity change of polyacetylene using dynamic rotaxane mobility by means of through-space chirality transfer.
    Ishiwari F; Fukasawa K; Sato T; Nakazono K; Koyama Y; Takata T
    Chemistry; 2011 Oct; 17(43):12067-75. PubMed ID: 21922578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual-Chemical-Shift-Anisotropy-Based Enantiodifferentiation in Lyotropic Liquid Crystalline Phases Based on Helically Chiral Polyacetylenes.
    Fuentes-Monteverde JC; Noll M; Das A; Immel S; Reggelin M; Griesinger C; Nath N
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202309981. PubMed ID: 37684219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the orienting properties of poly(gamma-benzyl-L-glutamate) by means of additives.
    Marx A; Böttcher B; Thiele CM
    Chemistry; 2010 Feb; 16(5):1656-63. PubMed ID: 20024988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly-γ-p-Biphenylmethyl-Glutamate as Enantiodifferentiating Alignment Medium for NMR Spectroscopy with Temperature-Tunable Properties.
    Jeziorowski S; Thiele CM
    Chemistry; 2018 Oct; 24(58):15631-15637. PubMed ID: 30085366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microspheres consisting of optically active helical substituted polyacetylenes: preparation via suspension polymerization and their chiral recognition/release properties.
    Chen B; Song C; Luo X; Deng J; Yang W
    Macromol Rapid Commun; 2011 Dec; 32(24):1986-92. PubMed ID: 22102401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How different are diastereomorphous orientations of enantiomers in the liquid crystalline phases of PBLG and PBDG: a case study.
    Marx A; Schmidts V; Thiele CM
    Magn Reson Chem; 2009 Sep; 47(9):734-40. PubMed ID: 19504463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The first suspension polymerization for preparing optically active microparticles purely constructed from chirally helical substituted polyacetylenes.
    Zhang H; Song J; Deng J
    Macromol Rapid Commun; 2014 Jul; 35(13):1216-23. PubMed ID: 24715681
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Lesot P; Berdagué P; Meddour A; Kreiter A; Noll M; Reggelin M
    Chempluschem; 2019 Feb; 84(2):144-153. PubMed ID: 31950698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field.
    Goh M; Kyotani M; Akagi K
    J Am Chem Soc; 2007 Jul; 129(27):8519-27. PubMed ID: 17579404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically controlled helical graphite films prepared from iodine-doped helical polyacetylene films using morphology-retaining carbonization.
    Matsushita S; Kyotani M; Akagi K
    J Am Chem Soc; 2011 Nov; 133(44):17977-92. PubMed ID: 21970653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of poly(l-phenylalanine) chiral stationary phases with varying peptide length.
    Ohyama K; Oyamada K; Kishikawa N; Ohba Y; Wada M; Maki T; Nakashima K; Kuroda N
    J Chromatogr A; 2008 Oct; 1208(1-2):242-5. PubMed ID: 18817916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic deposition polymerization of diacetylenes with tunable structure.
    Huo JP; Deng GH; Wu W; Xiong JF; Zhong ML; Wang ZY
    Macromol Rapid Commun; 2013 Nov; 34(22):1779-84. PubMed ID: 24150791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helical carbon and graphitic films prepared from iodine-doped helical polyacetylene film using morphology-retaining carbonization.
    Kyotani M; Matsushita S; Nagai T; Matsui Y; Shimomura M; Kaito A; Akagi K
    J Am Chem Soc; 2008 Aug; 130(33):10880-1. PubMed ID: 18656916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.