BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 23280690)

  • 1. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy.
    Liu Y; Ai K; Liu J; Deng M; He Y; Lu L
    Adv Mater; 2013 Mar; 25(9):1353-9. PubMed ID: 23280690
    [No Abstract]   [Full Text] [Related]  

  • 2. Achieving traceless ablation of solid tumors without recurrence by mild photothermal-chemotherapy of triple stimuli-responsive polymer-drug conjugate nanoparticles.
    Du C; Ding Y; Qian J; Zhang R; Dong CM
    J Mater Chem B; 2019 Jan; 7(3):415-432. PubMed ID: 32254729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linker-free Gold Nanoparticle Superstructure Coated with Poly(dopamine) by Site-Specific Polymerization for Amplifying Photothermal Cancer Therapy.
    Pan LL; Yang Y; Li DL; Geng WC; Jiang ZL; Song GS; Li YJ
    Chem Asian J; 2020 Sep; 15(17):2742-2748. PubMed ID: 32658379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy.
    Liu C; Ruan C; Shi R; Jiang BP; Ji S; Shen XC
    Biomater Sci; 2019 Mar; 7(4):1705-1715. PubMed ID: 30758351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Photothermal Nanodots Based on Self-Assembly of Peptide-Porphyrin Conjugates for Antitumor Therapy.
    Zou Q; Abbas M; Zhao L; Li S; Shen G; Yan X
    J Am Chem Soc; 2017 Feb; 139(5):1921-1927. PubMed ID: 28103663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of polypyrrole nanoparticles with tunable photothermal conversion and drug loading capacity.
    Guo B; Zhao J; Wu C; Zheng Y; Ye C; Huang M; Wang S
    Colloids Surf B Biointerfaces; 2019 May; 177():346-355. PubMed ID: 30772669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanorods with a noncovalently tailorable surface for multi-modality image-guided chemo-photothermal cancer therapy.
    Yue L; Sun C; Cheng Q; Ding Y; Wei J; Wang R
    Chem Commun (Camb); 2019 Nov; 55(90):13506-13509. PubMed ID: 31626260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of Fe-p-aminophenol nanoparticles for photothermal therapy.
    Liu Y; Liu S; Hu C; Li Y; Pang M
    Dalton Trans; 2019 Dec; 48(45):16848-16852. PubMed ID: 31687718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells.
    Lee SM; Park H; Choi JW; Park YN; Yun CO; Yoo KH
    Angew Chem Int Ed Engl; 2011 Aug; 50(33):7581-6. PubMed ID: 21721086
    [No Abstract]   [Full Text] [Related]  

  • 10. Hybrid Nanospheres to Overcome Hypoxia and Intrinsic Oxidative Resistance for Enhanced Photodynamic Therapy.
    Shi L; Hu F; Duan Y; Wu W; Dong J; Meng X; Zhu X; Liu B
    ACS Nano; 2020 Feb; 14(2):2183-2190. PubMed ID: 32023035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo tumor annihilation by near-infrared photothermal effect of a NiFe
    Gorgizadeh M; Azarpira N; Sattarahmady N
    Colloids Surf B Biointerfaces; 2018 Oct; 170():393-400. PubMed ID: 29945051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-free synthesis and metalation of hierarchical covalent organic framework spheres for photothermal therapy.
    Shi Y; Liu S; Zhang Z; Liu Y; Pang M
    Chem Commun (Camb); 2019 Nov; 55(95):14315-14318. PubMed ID: 31713554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mitochondria-targeted thiazoleorange-based photothermal agent for enhanced photothermal therapy for tumors.
    Bian W; Pan Z; Wang Y; Long W; Chen Z; Chen N; Zeng Y; Yuan J; Liu X; Lu YJ; He Y; Zhang K
    Bioorg Chem; 2021 Aug; 113():104954. PubMed ID: 34023651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypocrellin Derivative-Loaded Calcium Phosphate Nanorods as NIR Light-Triggered Phototheranostic Agents with Enhanced Tumor Accumulation for Cancer Therapy.
    Wang H; Jia Q; Liu W; Nan F; Zheng X; Ding Y; Ren H; Wu J; Ge J
    ChemMedChem; 2020 Jan; 15(2):177-181. PubMed ID: 31755659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper selenide nanocrystals for photothermal therapy.
    Hessel CM; Pattani VP; Rasch M; Panthani MG; Koo B; Tunnell JW; Korgel BA
    Nano Lett; 2011 Jun; 11(6):2560-6. PubMed ID: 21553924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermohydrogel Containing Melanin for Photothermal Cancer Therapy.
    Kim M; Kim HS; Kim MA; Ryu H; Jeong HJ; Lee CM
    Macromol Biosci; 2017 May; 17(5):. PubMed ID: 27906510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy.
    Chen WH; Luo GF; Lei Q; Hong S; Qiu WX; Liu LH; Cheng SX; Zhang XZ
    ACS Nano; 2017 Feb; 11(2):1419-1431. PubMed ID: 28107631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phthalocyanine-Conjugated Upconversion NaYF
    Kostiv U; Patsula V; Noculak A; Podhorodecki A; Větvička D; Poučková P; Sedláková Z; Horák D
    ChemMedChem; 2017 Dec; 12(24):2066-2073. PubMed ID: 29105372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear-Targeted Photothermal Therapy Prevents Cancer Recurrence with Near-Infrared Triggered Copper Sulfide Nanoparticles.
    Li N; Sun Q; Yu Z; Gao X; Pan W; Wan X; Tang B
    ACS Nano; 2018 Jun; 12(6):5197-5206. PubMed ID: 29894162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive drug delivery to mitochondria in vivo.
    Ruan L; Zhou M; Chen J; Huang H; Zhang J; Sun H; Chai Z; Hu Y
    Chem Commun (Camb); 2019 Dec; 55(97):14645-14648. PubMed ID: 31746851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.