These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 23281143)
41. Biomimetic Nanosilica-Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell-Free, One-Step Surgery. Wang SJ; Jiang D; Zhang ZZ; Chen YR; Yang ZD; Zhang JY; Shi J; Wang X; Yu JK Adv Mater; 2019 Dec; 31(49):e1904341. PubMed ID: 31621958 [TBL] [Abstract][Full Text] [Related]
42. Osteoinductive biomaterial geometries for bone regenerative engineering. Ozdemir T; Higgins AM; Brown JL Curr Pharm Des; 2013; 19(19):3446-55. PubMed ID: 23432675 [TBL] [Abstract][Full Text] [Related]
43. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
44. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236 [TBL] [Abstract][Full Text] [Related]
45. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering. Deng M; James R; Laurencin CT; Kumbar SG IEEE Trans Nanobioscience; 2012 Mar; 11(1):3-14. PubMed ID: 22275722 [TBL] [Abstract][Full Text] [Related]
46. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering. Rosa AL; de Oliveira PT; Beloti MM Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348 [TBL] [Abstract][Full Text] [Related]
47. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480 [TBL] [Abstract][Full Text] [Related]
48. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Ye G; Bao F; Zhang X; Song Z; Liao Y; Fei Y; Bunpetch V; Heng BC; Shen W; Liu H; Zhou J; Ouyang H Nanomedicine (Lond); 2020 Aug; 15(20):1995-2017. PubMed ID: 32812486 [TBL] [Abstract][Full Text] [Related]
49. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering. Long T; Yang J; Shi SS; Guo YP; Ke QF; Zhu ZA J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1455-64. PubMed ID: 25430707 [TBL] [Abstract][Full Text] [Related]
50. Orthopaedic tissue engineering and bone regeneration. Dickson G; Buchanan F; Marsh D; Harkin-Jones E; Little U; McCaigue M Technol Health Care; 2007; 15(1):57-67. PubMed ID: 17264413 [TBL] [Abstract][Full Text] [Related]
51. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
52. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
53. Metallic Nanomaterials for Bone Tissue Engineering. Dhivya S; Ajita J; Selvamurugan N J Biomed Nanotechnol; 2015 Oct; 11(10):1675-700. PubMed ID: 26502634 [TBL] [Abstract][Full Text] [Related]
54. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083 [TBL] [Abstract][Full Text] [Related]
55. Organic-inorganic composites designed for biomedical applications. Miyazaki T; Ishikawa K; Shirosaki Y; Ohtsuki C Biol Pharm Bull; 2013; 36(11):1670-5. PubMed ID: 24189410 [TBL] [Abstract][Full Text] [Related]
56. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
57. Biomimetic nanocomposites to control osteogenic differentiation of human mesenchymal stem cells. Liao S; Nguyen LT; Ngiam M; Wang C; Cheng Z; Chan CK; Ramakrishna S Adv Healthc Mater; 2014 May; 3(5):737-51. PubMed ID: 24574245 [TBL] [Abstract][Full Text] [Related]
58. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Ma H; Luo J; Sun Z; Xia L; Shi M; Liu M; Chang J; Wu C Biomaterials; 2016 Dec; 111():138-148. PubMed ID: 27728813 [TBL] [Abstract][Full Text] [Related]
59. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084 [TBL] [Abstract][Full Text] [Related]
60. Nanostructured scaffolds for bone tissue engineering. Li X; Wang L; Fan Y; Feng Q; Cui FZ; Watari F J Biomed Mater Res A; 2013 Aug; 101(8):2424-35. PubMed ID: 23377988 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]