These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23281194)

  • 1. Proteomics of phosphate use and deprivation in plants.
    Alexova R; Millar AH
    Proteomics; 2013 Feb; 13(3-4):609-23. PubMed ID: 23281194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics dissection of plant responses to mineral nutrient deficiency.
    Liang C; Tian J; Liao H
    Proteomics; 2013 Feb; 13(3-4):624-36. PubMed ID: 23193087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics techniques for the development of flood tolerant crops.
    Komatsu S; Hiraga S; Yanagawa Y
    J Proteome Res; 2012 Jan; 11(1):68-78. PubMed ID: 22029422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics of aluminum tolerance in plants.
    Zheng L; Lan P; Shen RF; Li WF
    Proteomics; 2014 Mar; 14(4-5):566-78. PubMed ID: 24339160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems.
    Lawlor DW
    J Exp Bot; 2002 Apr; 53(370):773-87. PubMed ID: 11912221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-distance call from phosphate: systemic regulation of phosphate starvation responses.
    Lin WY; Huang TK; Leong SJ; Chiou TJ
    J Exp Bot; 2014 Apr; 65(7):1817-27. PubMed ID: 24368506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective.
    Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B
    Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.
    Owiti J; Grossmann J; Gehrig P; Dessimoz C; Laloi C; Hansen MB; Gruissem W; Vanderschuren H
    Plant J; 2011 Jul; 67(1):145-56. PubMed ID: 21435052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root based approaches to improving nitrogen use efficiency in plants.
    Garnett T; Conn V; Kaiser BN
    Plant Cell Environ; 2009 Sep; 32(9):1272-83. PubMed ID: 19558408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress and challenges for abiotic stress proteomics of crop plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2013 Jun; 13(12-13):1801-15. PubMed ID: 23512887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.).
    Li K; Xu C; Fan W; Zhang H; Hou J; Yang A; Zhang K
    Plant Physiol Biochem; 2014 Oct; 83():232-42. PubMed ID: 25190054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shotgun proteomic analysis of long-distance drought signaling in rice roots.
    Mirzaei M; Soltani N; Sarhadi E; Pascovici D; Keighley T; Salekdeh GH; Haynes PA; Atwell BJ
    J Proteome Res; 2012 Jan; 11(1):348-58. PubMed ID: 22047206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen Fertilizer Induced Alterations in The Root Proteome of Two Rice Cultivars.
    Tang J; Sun Z; Chen Q; Damaris RN; Lu B; Hu Z
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency.
    Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J
    Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems biology-based approaches toward understanding drought tolerance in food crops.
    Jogaiah S; Govind SR; Tran LS
    Crit Rev Biotechnol; 2013 Mar; 33(1):23-39. PubMed ID: 22364373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate nutrition: improving low-phosphate tolerance in crops.
    López-Arredondo DL; Leyva-González MA; González-Morales SI; López-Bucio J; Herrera-Estrella L
    Annu Rev Plant Biol; 2014; 65():95-123. PubMed ID: 24579991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop proteomics: aim at sustainable agriculture of tomorrow.
    Salekdeh GH; Komatsu S
    Proteomics; 2007 Aug; 7(16):2976-96. PubMed ID: 17639607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.
    Kant S; Bi YM; Rothstein SJ
    J Exp Bot; 2011 Feb; 62(4):1499-509. PubMed ID: 20926552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in crop proteomics: PTMs of proteins under abiotic stress.
    Wu X; Gong F; Cao D; Hu X; Wang W
    Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.