These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23281281)

  • 1. Patient-specific modelling of bone and bone-implant systems: the challenges.
    Pankaj P
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):233-49. PubMed ID: 23281281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities?
    Taylor M; Prendergast PJ
    J Biomech; 2015 Mar; 48(5):767-78. PubMed ID: 25560273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk.
    Christen D; Webster DJ; Müller R
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2653-68. PubMed ID: 20439267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions.
    Phillips AT; Pankaj P; Howie CR; Usmani AS; Simpson AH
    Med Eng Phys; 2007 Sep; 29(7):739-48. PubMed ID: 17035063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position.
    Bonnet AS; Postaire M; Lipinski P
    Med Eng Phys; 2009 Sep; 31(7):806-15. PubMed ID: 19395303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified bone density-dependent orthotropic material model of human mandibular bone.
    Gačnik F; Ren Z; Hren NI
    Med Eng Phys; 2014 Dec; 36(12):1684-92. PubMed ID: 25456399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic post-yield response of cancellous bone simulated by stress-strain curves of bulk equivalent structures.
    Tsouknidas A; Maliaris G; Savvakis S; Michailidis N
    Comput Methods Biomech Biomed Engin; 2015; 18(8):839-46. PubMed ID: 24156688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The femur as a musculo-skeletal construct: a free boundary condition modelling approach.
    Phillips AT
    Med Eng Phys; 2009 Jul; 31(6):673-80. PubMed ID: 19201245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of a micro-thread at cervical position and a cylindrical intermediate zone on the mechanical behaviour of dental implants: A three-dimensional finite element analysis.
    Garitaonaindia U; Alcaraz JL
    Proc Inst Mech Eng H; 2015 Sep; 229(9):670-80. PubMed ID: 26334036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale modelling of the skeleton for the prediction of the risk of fracture.
    Viceconti M; Taddei F; Van Sint Jan S; Leardini A; Cristofolini L; Stea S; Baruffaldi F; Baleani M
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):845-52. PubMed ID: 18304710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanical modelling of skeletal muscles based on the finite element method.
    Böl M; Reese S
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):489-504. PubMed ID: 19230146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.
    Asgharpour Z; Zioupos P; Graw M; Peldschus S
    Forensic Sci Int; 2014 Mar; 236():109-16. PubMed ID: 24529781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle-driven finite element simulation of human foot movements.
    Spyrou LA; Aravas N
    Comput Methods Biomech Biomed Engin; 2012; 15(9):925-34. PubMed ID: 21711216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-Specific Finite Element Modelling of the Human Hand Complex: Muscle-Driven Simulations and Experimental Validation.
    Wei Y; Zou Z; Wei G; Ren L; Qian Z
    Ann Biomed Eng; 2020 Apr; 48(4):1181-1195. PubMed ID: 31845127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modal behaviour of bones during fracture.
    Horta-Rangel J; Rivera AL; Castano VM
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):91-5. PubMed ID: 19603306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.