These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23281281)

  • 21. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach.
    Baggi L; Pastore S; Di Girolamo M; Vairo G
    J Prosthet Dent; 2013 Jan; 109(1):9-21. PubMed ID: 23328192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite element modelling of a unilateral fixator for bone reconstruction: Importance of contact settings.
    Karunratanakul K; Schrooten J; Van Oosterwyck H
    Med Eng Phys; 2010 Jun; 32(5):461-7. PubMed ID: 20434935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element analysis of a bone-implant system with the proximal femur nail.
    Helwig P; Faust G; Hindenlang U; Kröplin B; Eingartner C
    Technol Health Care; 2006; 14(4-5):411-9. PubMed ID: 17065762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of finite element models for strain analysis of implant-supported prostheses using digital image correlation.
    Tiossi R; Vasco MA; Lin L; Conrad HJ; Bezzon OL; Ribeiro RF; Fok AS
    Dent Mater; 2013 Jul; 29(7):788-96. PubMed ID: 23694844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A micromechanical model to predict damage and failure in biological tissues. Application to the ligament-to-bone attachment in the human knee joint.
    Subit D; Chabrand P; Masson C
    J Biomech; 2009 Feb; 42(3):261-5. PubMed ID: 19135201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.
    Gras LL; Mitton D; Crevier-Denoix N; Laporte S
    Comput Methods Biomech Biomed Engin; 2012; 15(1):13-21. PubMed ID: 21607890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Primary stability of uncemented femoral resurfacing implants for varying interface parameters and material formulations during walking and stair climbing.
    Rothstock S; Uhlenbrock A; Bishop N; Morlock M
    J Biomech; 2010 Feb; 43(3):521-6. PubMed ID: 19913227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The possibilities of uncemented glenoid component--a finite element study.
    Gupta S; van der Helm FC; van Keulen F
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):292-302. PubMed ID: 15003345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of interface condition and implant design on bone remodelling and failure risk for the resurfaced femoral head.
    Rothstock S; Uhlenbrock A; Bishop N; Laird L; Nassutt R; Morlock M
    J Biomech; 2011 Jun; 44(9):1646-53. PubMed ID: 21511258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element analysis in spine research.
    Fagan MJ; Julian S; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):281-98. PubMed ID: 12365787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.
    Cristofolini L; Schileo E; Juszczyk M; Taddei F; Martelli S; Viceconti M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2725-63. PubMed ID: 20439271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical finite element analysis of small diameter and short dental implants: extensive study of commercial implants.
    Bourauel C; Aitlahrach M; Heinemann F; Hasan I
    Biomed Tech (Berl); 2012 Jan; 57(1):21-32. PubMed ID: 23092989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of bone inelastic response in interaction phenomena with dental implants.
    Natali AN; Carniel EL; Pavan PG
    Dent Mater; 2008 Apr; 24(4):561-9. PubMed ID: 18207565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle.
    Böl M; Weikert R; Weichert C
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1299-310. PubMed ID: 21783139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element modelling of the foot for clinical application: A systematic review.
    Behforootan S; Chatzistergos P; Naemi R; Chockalingam N
    Med Eng Phys; 2017 Jan; 39():1-11. PubMed ID: 27856143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.